Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng trả lời, có trả lời nó cũng hổng tick đâu mà chi cho nó mệt
a.
\(a^2+a+43=k^2\) (\(k\in N;k>a\))
\(\Leftrightarrow4a^2+4a+172=4k^2\)
\(\Leftrightarrow\left(2a+1\right)^2+171=\left(2k\right)^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2a+1\right)^2=171\)
\(\Leftrightarrow\left(2k-2a-1\right)\left(2k+2a+1\right)=171\)
Pt ước số, bạn tự lập bảng
b.
\(a^2+81=k^2\)
\(\Leftrightarrow k^2-a^2=81\)
\(\Leftrightarrow\left(k-a\right)\left(k+a\right)=81\)
Bạn tự lập bảng ước số
câu a
15! có chứa 2(hoặc 4,6,8,...)*5 cho ra kết quả có tận cùng =0
0+2=2 vậy tận cùng của 15!+2 bằng 2
Để n(n+2) là số chính phương, xảy ra 2 TH:
TH1 : n = 0 => n(n+2) = 0 = 0.0 = 02
TH2 : n > 1
=> n < n + 2
=> n.n < (n+2)n
=> n2 < n(n+2) (1)
n(n+2) < n(n+2) + 1
=> n(n+2) < n2 + 2n + 1
=> n(n+2) < (n+1)2
Từ (1)(2) có : n2 < n(n+1) < (n+1)2
=> K có n t/m TH2
Vậy n = 0
\(n\left(n+2\right)\)là số chính phương nên đặt \(n\left(n+2\right)=a^2\)
\(\Leftrightarrow n^2+2n+1-1=a^2\)
\(\Leftrightarrow\left(n+1\right)^2-1=a^2\)
\(\Leftrightarrow\left(n+1\right)^2-a^2=1\)
\(\Leftrightarrow\left(n+1-a\right)\left(n+1+a\right)=1=1.1.=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}n+1-a=1\\n+1+a=1\end{cases}}\Leftrightarrow\hept{\begin{cases}n-a=1\\n+a=1\end{cases}}\Leftrightarrow\hept{\begin{cases}n=\frac{1}{2}\\a=\frac{1}{2}\end{cases}}\left(L\right)\)
\(TH1:\hept{\begin{cases}n+1-a=-1\\n+1+a=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}n-a=0\\n+a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}n=0\\a=0\end{cases}}\)
Vậy n = 0
a) Đặt n2+2006=a2(a∈Z)n2+2006=a2(a∈Z)
⇒2006=a2−n2=(a−n)(a+n)(1)⇒2006=a2−n2=(a−n)(a+n)(1)
Mà (a+n)-(a-n)=2n⋮⋮2
=> a+n và a-n cg tính chẵn, lẻ
TH1: a+n; a-n cg lẻ => (a+n)(a-n) lẻ trái với (1)
TH2: a+n; a-n cg chẵn => (a+n)(a-n) chia hết cho 4, trái với (1)
Vậy không tìm đc n để n2+2006n2+2006 là số chính phương