Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nỗi hứng lm cho vui!
Bài 1:
a) H = \(x^2-4x+16=\left(x^2-4x+4\right)+12=\left(x-2\right)^2+12\)
Vì \(\left(x-2\right)^2\ge0\) => H \(\ge\) 12
=> Dấu = xảy ra <=> \(x=2\)
b) K = \(2x^2+9y^2-6xy-8x-12y+2018\)
= \(\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+\left(x^2-12x+36\right)+1982\)
= \(\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-6\right)^2+1978\)
= \(\left(x-3y+2\right)^2+\left(x-2\right)^2+1978\)
Vì \(\left\{{}\begin{matrix}\left(x-3y+2\right)^2\ge0\\\left(x-6\right)^2\ge0\end{matrix}\right.\) => K \(\ge\) 1978
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=\dfrac{2+x}{3}\\x=6\end{matrix}\right.\) => \(x=6;y=\dfrac{8}{3}\)
Bài 2:
a) P = \(-x^2-4x+16=-\left(x^2+4x+4\right)+20\)
= \(-\left(x+2\right)^2+20\le20\)
=> Dấu = xảy ra <=> \(x=-2\)
b) \(Q=-x^2+2xy-4y^2+2x+10y-2017\)
= \(-\left[\left(x^2-2xy+y^2\right)+3\left(y^2-4y+4\right)-2\left(x-y\right)+2005\right]\)
= \(-\left[\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2004\right]\)
= \(-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]-2004\)
Vì \(\left\{{}\begin{matrix}-\left(x-y-1\right)^2\le0\\3\left(y-2\right)^2\le0\end{matrix}\right.\) => Q \(\le-2004\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\) <=> \(x=3;y=2\)
a ) \(M=2+x-x^2\)
\(=-x^2+x-\frac{1}{4}+\frac{9}{4}\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)đạt GTNN là \(\frac{9}{4}\) tại x = \(\frac{1}{2}\)
b ) \(S=-x^2+2xy-4y^2+2x+10y-3\)
\(=\left[\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)-1\right]+\left(-3y^2+12y-12\right)+10\)
\(=\left[-\left(x-y\right)^2+2\left(x-y\right)-1\right]-3\left(y-2\right)^2+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10\le10\) có GTLN là 10
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy \(S_{max}=10\Leftrightarrow x=3;y=2\)
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
Bài 1 :
A + B = 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= ( 4x2 + 3x2 ) - ( 5xy - 2xy ) + ( 3y2 - y2 )
= 7x2 - 3xy + 2y2
A - B = 4x2 - 5xy + 3y2 - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= ( 4x2 - 3x2 ) - ( 5xy + 2xy ) + ( 3y2 + y2 )
= x2 - 7xy + 4y2
Bài 2 :
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 - (5x2 - 2xy)
M = 6x2 + 9xy - y2 - 5x2 + 2xy
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
Vậy M = x2 + 11xy - y2
b) (3xy - 4y2) - N = x2 - 7xy + 8y2
N = 3xy - 4y2 - x2 - 7xy + 8y2
N = ( 3xy - 7xy ) - ( 4y2 - 8y2 ) - x2
N = -4xy + 4y2 - x2
Vậy N = -4xy + 4y2 - x2
3, Cho đa thức
A(x)+B(x) = (3x4-\(\dfrac{3}{4}\)x3+2x2-3)+(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3+8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)
= (3x4+8x4)+(-3/4x3+1/5x3)+(-3+2/5)+2x2-9x
= 11x4 -0.55x3-2.6+2x2-9x
A(x)-B(x)=(3x4-\(\dfrac{3}{4}\)x3+2x2-3)-(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3-8x4-\(\dfrac{1}{5}\)x3+9x-\(\dfrac{2}{5}\)
= (3x4-8x4)+(-3/4x3-1/5x3)+(-3-2/5)+2x2+9x
= -5x4-0.95x3-3.4+2x2+9x
B(x)-A(x)=(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))-(3x4-\(\dfrac{3}{4}\)x3+2x2-3)
=8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)-3x4+\(\dfrac{3}{4}\)x3-2x2+3
=(8x4-3x4)+(1/5x3+3/4x3)+(2/5+3)-9x-2x2
= 5x4+0.95x3+2.6-9x-2x2
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
a)\(P=-x^2-4x+16\)
\(=-x^2-4x-4-12\)
\(=-\left(x^2+4x+4\right)-12\)
\(=-\left(x+2\right)^2-12\le-12\)
Đẳng thức xảy ra khi \(x=-2\)
b)\(-x^2+2xy-4y^2+2x+10y-2017\)
\(=\left(-x^2+2xy-y^2+2x-2y-1\right)+\left(-3y^2+12y-12\right)-2004\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)-2004\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2-2004\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2-2004\le-2004\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)