Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0
hay m<>1
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)
\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)
\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)
\(=4m^2-32m+64-4m^2+24m-20\)
\(=-8m+44\)
Để phương trình có hai nghiệm phân biệt thì -8m+44>0
=>-8m>-44
hay m<11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)
\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)
\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow4m^2-8m+4-8m-44=0\)
\(\Leftrightarrow4m^2-16m-40=0\)
\(\Leftrightarrow m^2-4m-10=0\)
\(\Leftrightarrow\left(m-2\right)^2=14\)
hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Pt hoành độ giao điểm (d) và (P):
\(x^2-8x=x-m\Leftrightarrow x^2-9x+m=0\)
\(\Delta=81-4m\ge0\Rightarrow m\le\dfrac{81}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}a+b=9\\ab=m\end{matrix}\right.\)
\(a^3+b^3=675\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=675\)
\(\Leftrightarrow9^3-27m=675\)
\(\Rightarrow m=2\)
Pt hoành độ giao điểm (d) và (P):
x\(^2\)
−8x=x−m⇔x\(^2\)
−9x+m=0
Δ=81−4m≥0⇒m≤\(\dfrac{81}{4}\)
Theo hệ thức Viet: \left\{{}\begin{matrix}a+b=9\\ab=m\end{matrix}\right.\(\left\{{}\begin{matrix}a+b=9\\ab=m\end{matrix}\right.\)
a
\(^3\)+b
\(^3\)=675⇔(a+b)\(^3\)
−3ab(a+b)=675
\Leftrightarrow9^3-27m=675⇔9
\(^3\)−27m=675
\Rightarrow m=2⇒m=2
a: Thay y=2 vào (P), ta được: \(x^2=2\)
\(\Leftrightarrow x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx+2m-3=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8\)
\(=\left(2m-2\right)^2+8>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
x1 = x2 + 2 (1)
Theo Viet:
x1 + x2 = -2(m - 1) (2)
x1 . x2 = m2 -4m -3 (3)
Từ (1) thay x1 vào (2) ta có:
2.x2 = 2m - 4 => x2 = m - 2
=> x1 = x2 + 2 = m
Thay x1, x2 vào (3) ta có:
m(m - 2) = m2 - 4m -3
=> 2m = -3 => m = -3/2
Thử lại Với m = -3/2 thì y = x2 - 5x + 21/4
Phương trình x2 - 5x + 21/4 = 0 có 2 nghiện là -3/2 và -7/2
x1 = x2 + 2 (1)
Theo Viet:
x1 + x2 = -2(m - 1) (2)
x1 . x2 = m2 -4m -3 (3)
Từ (1) thay x1 vào (2) ta có:
2.x2 = 2m - 4 => x2 = m - 2
=> x1 = x2 + 2 = m
Thay x1, x2 vào (3) ta có:
m(m - 2) = m2 - 4m -3
=> 2m = -3 => m = -3/2
Thử lại Với m = -3/2 thì y = x2 - 5x + 21/4
Phương trình x2 - 5x + 21/4 = 0 có 2 nghiện là -3/2 và -7/2
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
Bài toán tương đương: tìm m để pt \(x^2-\left(2m-3\right)x-m^2+3m=0\) có 2 nghiệm pb thỏa mãn \(1< x_1< x_2< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m-3\right)^2-4\left(-m^2+3m\right)>0\\f\left(1\right)=1-\left(2m-3\right)-m^2+3m>0\\f\left(6\right)=36-6\left(2m-3\right)-m^2+3m>0\\1< \frac{x_1+x_2}{2}< 6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m^2-24m+9>0\\-m^2+m+4>0\\-m^2-9m+54>0\\2< 2m-3< 12\end{matrix}\right.\) \(\Rightarrow\frac{6+3\sqrt{2}}{4}< m< \frac{1+\sqrt{17}}{2}\)