Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
ta có hệ sau :
\(\hept{\begin{cases}a.3^2+b.3-1=-7&-\frac{b}{2a}=1&\end{cases}\Leftrightarrow\hept{\begin{cases}9a+3b=-6\\b=-2a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=4\end{cases}}}\)
vậy \(2a+b=0\)
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Biết rằng parabol (P): y=ax2+bx-1 qua điểm A(3;-7) và có hoành độ đỉnh bằng 1. Tính giá trị của biểu thức 2a+b . Các bạn ơi đề bài bị sai dề bài này mới chính xác
Bài toán tương đương: tìm m để pt \(x^2-\left(2m-3\right)x-m^2+3m=0\) có 2 nghiệm pb thỏa mãn \(1< x_1< x_2< 6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(2m-3\right)^2-4\left(-m^2+3m\right)>0\\f\left(1\right)=1-\left(2m-3\right)-m^2+3m>0\\f\left(6\right)=36-6\left(2m-3\right)-m^2+3m>0\\1< \frac{x_1+x_2}{2}< 6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8m^2-24m+9>0\\-m^2+m+4>0\\-m^2-9m+54>0\\2< 2m-3< 12\end{matrix}\right.\) \(\Rightarrow\frac{6+3\sqrt{2}}{4}< m< \frac{1+\sqrt{17}}{2}\)