Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a-b = 2(a+b)= 3\(\frac{a}{b}\)=\(\frac{3b+a}{b}\) [b khác 0]
=> a-b = 2a+2b
=> a = 2a +3b => a = -3b
=> a-b = 2(a+b) = \(\frac{-3b+3b}{b}=\frac{0}{b}\) =0
=> a-b = a+b = 0 => a=b = 0
mà b khác 0 => ko tồn tại a,b t/mãn
Vậy ko tồn tại a,b thỏa mãn đề bài
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
3) => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
Do a,b bình đẳng , coi b>0
A) a;b cùng dấu
=> a dương => a>0
=>a/b<0/b=0
=> a/b là số hữu tỉ dương nếu a;b cùng dâu (1)
b) a và b khác dấu <=> a dương và b âm hoặc a âm và b dương
Nếu a dương và b âm thì số hữu tỉ : a/b =m/-n âm (a=m;b=-n)
Nếu a âm b dương thì số hữu tỉ a/b = -p/q âm ( a=-b ; b=q )
Khi a,b cùng dấu:
\(\frac{a}{b}>0\)
Khi a, b khác dấu:
\(\frac{a}{b}< 0\)
Bài 1: Ta có:
a + b = a.b => a = a.b - b = b.(a - 1) (1)
=> a : b = a - 1 = a + b
=> b = -1
Thay b = -1 vào (1) ta có: a = -1.(a - 1) = -a + 1
=> a + a = 1 = 2a
\(\Rightarrow a=\frac{1}{2}\)
Vậy \(a=\frac{1}{2};b=-1\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}=\frac{1-2y}{8}\)
=> (1 - 2y).x = 40
\(\Rightarrow40⋮1-2y\)
Mà 1 - 2y là số lẻ \(\Rightarrow1-2y\in\left\{1;-1;5;-5\right\}\)
Ta có bảng sau:
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (40;0) ; (-40;1) ; (8;-2) ; (-8;3)
Bài 1 : Xét tích : \(a(b+2001)=ab+2001a\)
\(b(a+2001)=ab+2001b\)
Vì b > 0 nên b + 2001 > 0.
Trường hợp 1 : Nếu \(a>b\)thì \(ab+2001a>ab+2001b\)
\(\Leftrightarrow a(b+2001)>b(a+2001)\)
\(\Leftrightarrow\frac{a}{b}>\frac{a+2001}{b+2001}\)
Xét tiếp \(a(b+2001)=ab+2001a\)
\(b(a+2001)=ab+2001b\)
Vì b < 0 nên b + 2001 < 0
Nếu a < b thì \(ab+2001a< ab+2001b\)
\(\Leftrightarrow a(b+2001)< b(a+2001)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+2001}{b+2001}\)
Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)
Bài 2 : Tham khảo :
Câu hỏi của trần nguyễn khánh nam - Toán lớp 7 | Học trực tuyến
Bài 3 :
a, Ta có : \(\frac{13}{38}>\frac{13}{39}=\frac{1}{3}=\frac{29}{87}>\frac{29}{88}\)
\(\Rightarrow\frac{-13}{38}< \frac{29}{-88}\)
b, Ta có : \(\frac{267}{-268}< 1< \frac{1347}{1343}\)
\(\Leftrightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
Ta có:
a - b = 2(a + b)
=> a - b = 2a + 2b
=> a - 2a = 2b + b
=> -a = 3b
\(\Rightarrow\frac{a}{b}=-3\); \(a=-3b\)
Laị có:
a - b = \(3.\frac{a}{b}\)
=> -3b - b = 3.(-3)
=> -4b = -9
\(\Rightarrow b=\frac{-9}{-4}=\frac{9}{4}\)
\(\Rightarrow a=\frac{9}{4}.\left(-3\right)=\frac{-27}{4}\)
Vậy \(a=\frac{-27}{4};b=\frac{9}{4}\)