\(\frac{a}{b}\)

1. Chứng minh

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2024

1) a/b = a - 1. vì a+ b= ab
                     ( ab-a) - 1= 0
                     a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
          => b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý) 
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
                3)     => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2 
                a-1 = 1/2 -1 = -1/2
 => a/b = a-1 ( đpcm)
 vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi

 

4 tháng 11 2024

1) a/b = a - 1. vì a+ b= ab
                     ( ab-a) - 1= 0
                     a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
          => b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý) 
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
                2)     => 2a = 1 => a= 1/2
3) khi đó : a/b = 1/2 : (-1) = -1/2 
                a-1 = 1/2 -1 = -1/2
 => a/b = a-1 ( đpcm)
 vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi

 

19 tháng 8 2018

1)

\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)

\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)

mà ab = ab; ac > bc ( vì a > b )

=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)

20 tháng 10 2018

\(ab=\frac{a}{b}\)

\(a+b=ab=>ab-a-b=0\)

\(ab-b=a\)

\(b.\left(a-1\right)=a\)

\(\frac{a}{b}=a-1\)

24 tháng 10 2018

\(1,\)

\(a,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)

\(b,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

\(3,\)

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(4,\) https://hoc24.vn/hoi-dap/question/157445.html

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó