Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT: \(\sqrt{x+3}x^4=2x^4-2008x+2008\)
DK xác định : \(x+3\ge0\Leftrightarrow x\ge-3\)(**)
PT đã cho tương đương:
\(x^4\left(\sqrt{x+3}-2\right)+2008x=2008\)(***)
Nếu :\(x>1\) thì \(x+3>4\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x>2008\)
Nếu \(-3\le x\le1\)thì\(0\le x+3< 4\Rightarrow\sqrt{x+3}-2< 0\)và \(x^4\ge0\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)\le0\) Mặt khác : \(2008x< 2008\)
\(\Rightarrow x^4\left(\sqrt{x+3}-2\right)+2008x< 2008\)
* \(x=1\) thỏa mãn (***)
Vậy (***) có nghiệm duy nhất x= 1
KL: Nghiệm của pt đã cho là : x = 1
Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\)
Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)
Tới đây bạn có thể tự làm được :)
Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT :
\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)
Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4
Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4
đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4
cái này mới đúng nhé!
\(P=x^{2008}-2008x+2008\)
\(P=x\left(x^{2007}-2008\right)+2008\ge2008\)
Dấu '' = '' xảy ra khi : x = 0
Vậy ...........
p/s : làm bừa
CTV gì mak kém thế
\(P=x^{2018}-2018x+2018\)
\(\Leftrightarrow P=x^{2018}+1+1+...+1-2018x+1\)(Ở giữa có 2017 số 1)
\(x^{2018}+1+1+...+1\left(2017so1\right)\ge2018\sqrt[2018]{x^{2018}}=2018x\)
\(\Rightarrow P\ge2018x-2018x+1=1\)
Vậy MIN = 1 <=> x = 1
p/s:CTV gà mờ