K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Nguyễn Thành Phát

P = x² + xy + y² - 3x - 3y + 2010 ⇒ 4P = 4(x² + xy + y² - 3x - 3y + 2010) 

= 4x² + 4xy + 4y² - 12x - 12y + 8040 = 4x² + 4xy + y² + 3y² - 12x - 6y - 6y + 3 + 9 + 8028 

= (4x² + 4xy + y²) - (12x + 6y) + 9 + (3y² - 6y + 3) + 8028 

= [ (2x + y)² - 6(2x + y) + 9 ] + 3(y² - 2y + 1) + 8028 

= (2x + y - 3)² + 3(y - 1)² + 8028. Do (2x + y - 3)² ≥ 0 và 3(y - 1)² ≥ 0 

⇒ (2x + y - 3)² + 3(y - 1)² + 8028 ≥ 8028 ⇒ 4P ≥ 8028 ⇒ P ≥ 2007. 

Dấu '=' xảy ra ⇔ 3(y - 1)² = 0 và (2x + y - 3)² = 0 

⇔ y - 1 = 0 và 2x + y - 3 = 0 

⇔ y = 1 và x = (3 - y)/2 = (3 - 1)/2 = 1

Vậy với x = y = 1 thì GTNN của P là 2007.

7 tháng 6 2017

-2x chứ đâu phải -3x đâu bạn

19 tháng 11 2017

Bạn nhân 4 lên rồi tách ra hằng đẳng thức

19 tháng 11 2017

Ta có 

A=x2+xy+y2-3x-3y+2016

=>4A=4x2+4xy+y2 -6(2x+y) + 9 + 3(y2-2y+1) +8052

         =(2x+y)2-6(2x+y)+9 + 3(y-1)2 +8052 

        =(2x+y-3)2+3(y-1)2+8052>= 8052

     =>A>=2013

Dấu bang xay ra khi x=y=1

7 tháng 6 2017

Ta có: P= \(x^2+xy+y^2-2x-3y+2010\)

\(\Leftrightarrow\) 4P= \(4\left(x^2+xy+y^2-2x-3y+2010\right)\)

= \(4x^2+4xy+4y^2-8x-12y+8040\)

= \(\left(4x^2+y^2+4+4xy-8x-8y\right)+3y^2-8y+8036\)

= \(\left(2x+y-2\right)^2+3y^2-8y+\dfrac{16}{3}-\dfrac{16}{3}+8036\)

= \(\left(2x+y-2\right)^2+3\left(y^2-\dfrac{8}{3}y+\dfrac{16}{9}\right)+\dfrac{24092}{3}\)

= \(\left(2x+y-2\right)^2+3\left(y-\dfrac{4}{3}\right)^2+\dfrac{24092}{3}\) \(\geq\) \(\dfrac{24092}{3}\)

\(\Rightarrow\) 4P \(\geq\) \(\dfrac{24092}{3}\) \(\Rightarrow\) P \(\geq\) \(\dfrac{6023}{3}\)

Dấu = xảy ra khi \(\begin{cases} (2x+y-2)^{2}=0\\ (y-\dfrac{4}{3})^{2}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x+y-2=0\\ y-\dfrac{4}{3}=0 \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(y-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} 2x=-(\dfrac{4}{3}-2)\\ y=\dfrac{4}{3} \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)

Từ đó suy ra Min P= \(\dfrac{6023}{3}\) khi \(\begin{cases} x=\dfrac{1}{3}\\ y=\dfrac{4}{3} \end{cases} \)

Chúc bạn học tốt. haha

11 tháng 3 2017

A=(5x-3y-2)+ (x+y+1)+ 4

Vậy giá trị nhỏ nhất của A là 4

9 tháng 6 2016

ta có x + y + xy = 15 => x + y = 15 - xy => \(\left(x+y\right)^2=\left(15-xy\right)^2\)

\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy\)

     \(=\left(xy\right)^2-32xy+225=\left(xy\right)^2-32xy+256-31\)

      \(=\left(xy-16\right)^2-31\ge-31\)

9 tháng 6 2016

Xin lỗi hôm qua mình giải sải. giờ mình xin đính chính lại nhé 

8 tháng 6 2015

a, A = x^6 - 2 x^3 +1 + x^2 - 2x + 1 + 13=(x^3 - 1)^2 + (x-1)^2 +13 

Vậy Min A = 13 khi x=1

 

8 tháng 6 2015

a, A = (x-1)(x+5)(x-3)(x+7) =(x^2 + 4x -5) (x^2 + 4x - 21) = (x^2+4x-5)(x^2+4x-5-16)

 Đặt x^2 +4x -5 = a =>A = a.(a-16) = a^2 - 16a = a^2 - 2.a.8 + 64 - 64 = (a-8)^2 - 64\(\ge-64\)

Vậy GTNN của A = -64  khi a-8 =0 hay x^2 +4 x -13 =0 giải ra x