Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = x^6 - 2 x^3 +1 + x^2 - 2x + 1 + 13=(x^3 - 1)^2 + (x-1)^2 +13
Vậy Min A = 13 khi x=1
Nguyễn Thành Phát
P = x² + xy + y² - 3x - 3y + 2010 ⇒ 4P = 4(x² + xy + y² - 3x - 3y + 2010)
= 4x² + 4xy + 4y² - 12x - 12y + 8040 = 4x² + 4xy + y² + 3y² - 12x - 6y - 6y + 3 + 9 + 8028
= (4x² + 4xy + y²) - (12x + 6y) + 9 + (3y² - 6y + 3) + 8028
= [ (2x + y)² - 6(2x + y) + 9 ] + 3(y² - 2y + 1) + 8028
= (2x + y - 3)² + 3(y - 1)² + 8028. Do (2x + y - 3)² ≥ 0 và 3(y - 1)² ≥ 0
⇒ (2x + y - 3)² + 3(y - 1)² + 8028 ≥ 8028 ⇒ 4P ≥ 8028 ⇒ P ≥ 2007.
Dấu '=' xảy ra ⇔ 3(y - 1)² = 0 và (2x + y - 3)² = 0
⇔ y - 1 = 0 và 2x + y - 3 = 0
⇔ y = 1 và x = (3 - y)/2 = (3 - 1)/2 = 1
Vậy với x = y = 1 thì GTNN của P là 2007.
a, A = (x-1)(x+5)(x-3)(x+7) =(x^2 + 4x -5) (x^2 + 4x - 21) = (x^2+4x-5)(x^2+4x-5-16)
Đặt x^2 +4x -5 = a =>A = a.(a-16) = a^2 - 16a = a^2 - 2.a.8 + 64 - 64 = (a-8)^2 - 64\(\ge-64\)
Vậy GTNN của A = -64 khi a-8 =0 hay x^2 +4 x -13 =0 giải ra x
\(\left(x+y\right)^2\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^3+y^3\right)\)
\(=x^4+y^4+xy^3+x^3y=x^4+y^4+xyy^2+xyx^2=x^4+y^4+3y^2+3x^2\)