Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)
Câu a :
Ta có :
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)
Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Câu b :
Ta có :
\(-x^2+6-8\)
\(=-x^2+6x-9+1\)
\(=-\left(x^2-6x+9\right)+1\)
\(=-\left(x-3\right)^2+1\)
Do :
\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)
Vâỵ GTNN của biểu thức \(=11\)
Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
a) \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x+3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
b) \(-x^2+6x-1\)
\(=-\left(x^2-6x+1\right)\)
\(=-\left(x^2-6x+9-8\right)\)
\(=-\left[\left(x-3\right)^2-8\right]\)
\(=8-\left(x-3\right)^2\le8\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
A = -(x2+6x-11)
=-(x2+6x+9-20)
=-(x+3)2 + 20 \(\le20\)
vậy min A = 20
dấu = xảy ra khi x = -3
câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+7\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+7\ge7\left(do\left(x-y\right)^2;\left(y-2\right)^2\ge0\right)\)
Vậy max =7 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
\(B=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
\(B_{max}=-2\) khi \(x=3\)
\(B=-(x-3)^2-2\le2 \)
Đẳng thức xảy ra khi x = 3.
Vậy GTLN của B là 2 (khi x = 3)