K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

A = -(x2+6x-11)

=-(x2+6x+9-20)

=-(x+3)2 + 20 \(\le20\)

vậy min A = 20

dấu = xảy ra khi x = -3

câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé

13 tháng 7 2017

à tớ nhầm 1 chỗ, là max A = 20

6 tháng 11 2016

A= 5x-x2= -x2+5x = -(x2-5x+25/4-25/4)= -(x-5/2)2+25/4

vì -(x-5/2)2< hoặc = 0 vs mọi x

nên - (x-5/2)+25/4< hoặc =25/4

dấu bằng xảy ra khi và chỉ khi x-5/2=0

=> x=5/2

câu b tg tự đặt dấu trừ ra ngoài rồi tách 11= 9+2 là ra giá trị lớn nhất của B=-2 tại x=3

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

30 tháng 10 2019

a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 = 9/4 <=> x = 3/2

b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=>  x - 3 = 0 <=> x = 3

Vậy Min của x2 - 6x + 18 = 9 <=> x = 3

30 tháng 10 2019

c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x

Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2

Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2

d) Ta có : x2 + y2 - 2x + 6y + 2019

= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009

= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y=  -3

15 tháng 7 2018

undefined

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn

13 tháng 12 2018

a) \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x+3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

b) \(-x^2+6x-1\)

\(=-\left(x^2-6x+1\right)\)

\(=-\left(x^2-6x+9-8\right)\)

\(=-\left[\left(x-3\right)^2-8\right]\)

\(=8-\left(x-3\right)^2\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

21 tháng 9 2016

\(B=3x^2-6x+1=3x^2-6x+3-2=3\times\left(x^2-2x+1\right)-2=3\times\left(x-1\right)^2-2\)

\(3\times\left(x-1\right)^2\ge0\Rightarrow3\times\left(x-1\right)^2-2\ge-2\)

\(MinB=-2\Leftrightarrow x=1\)

\(A=-5x^2-4x+13=-5\times\left(x^2+\frac{4}{5}x-\frac{13}{5}\right)=-5\times\left(x^2+2\times x\times\frac{2}{5}+\frac{4}{25}-\frac{4}{25}-\frac{13}{5}\right)=-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\)

\(\left(x+\frac{2}{5}\right)^2\ge0\Rightarrow\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\ge-\frac{69}{25}\Rightarrow-5\times\left[\left(x+\frac{2}{5}\right)^2-\frac{69}{25}\right]\le\frac{69}{5}\)

\(M\text{ax}A=\frac{69}{5}\Leftrightarrow x=-\frac{2}{5}\)

\(B=-x^2-10x+8=-x^2-10x-25+33=33-\left(x+5\right)^2\)

\(\left(x+5\right)^2\ge0\Rightarrow33-\left(x+5\right)^2\le33\)

\(M\text{ax}B=33\Leftrightarrow x=-5\)

22 tháng 9 2016

Thanks