K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

Câu 1.

P = x2 - 2x + 5 

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinP = 4 <=> x = 1

Q = 2x2 - 6x

= 2( x2 - 3x + 9/4 ) - 9/2

= 2( x - 3/2 )2 - 9/2 ≥ -9/2 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MinQ = -9/2 <=> x = 3/2

M = x2 + y2 - x + 6y + 10

= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4

= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

=> MinM = 3/4 <=> x = 1/2 ; y = -3

Câu 2.

A = 4x - x2 + 3

= -( x2 - 4x + 4 ) + 7

= -( x - 2 )2 + 7 ≤ 7 ∀ x

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxA = 7 <=> x = 2

B = x - x2

= -( x2 - x + 1/4 ) + 1/4

= -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/4 <=> x = 1/2

N = 2x - 2x2

= -2( x2 - x + 1/4 ) + 1/2

= -2( x - 1/2 )2 + 1/2 ≤ 1/2 ∀ x

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> MaxB = 1/2 <=> x = 1/2

11 tháng 9 2020

Làm gần xong thì lỡ bấm out ra TT

\(P=x^2-2x+5=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy minP = 4 <=> x = 1

\(Q=2x^2-6x=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

Vậy minQ = - 9/2 <=> x = 3/2

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy minM = 3/4 <=> x = 1/2 và y = - 3

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

12 tháng 7 2018

1/

a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x=1/2

Vậy Amin=4 khi x=1/2

b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)

Dấu "=" xảy ra khi x=-1

Vậy Bmin = -4 khi x=-1

2/

a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)

Dấu "=" xảy ra khi x=3

Vậy Amax = 19 khi x=3

b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)

Dấu "=" xảy ra khi x=5/4

Vậy Bmax = 31/8 khi x=5/4

12 tháng 7 2018

1.

A=\(4x^2-4x+5\)

A=\(\left(2x\right)^2-4x+1+4\)

A=\(\left(2x-1\right)^2+4\)

\(\left(2x-1\right)^2\)≥0 với mọi x

\(\left(2x-1\right)^2+4\)≥4 với mọi x

Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0

⇔2x-1=0

⇔x=\(\dfrac{1}{2}\)

Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)

B=\(3x^2+6x-1\)

B=3(\(\left(x^2+2x\right)\)-1

B=\(3.\left(x^2+2x-1+1\right)-1\)

B=\(3.\left(x+1\right)^2-3-1\)

B=\(3\left(x-1\right)^2-4\)

\(3.\left(x-1\right)^2\)≥0 với mọi x

\(3\left(x-1\right)^2-4\)≥-4 với mọi x

dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)

⇔x-1=0

⇔x=1

vậy GTNN của B=-4 khi x=1

19 tháng 8 2019

\(\text{a) }A=2x^2+4x\)

\(A=2x^2+4x+2-2\)

\(A=2\left(x^2+2x+1\right)-2\)

\(A=2\left(x+1\right)^2-2\)

\(\text{Vì }2\left(x+1\right)^2\ge0\)

\(\text{nên }2\left(x+1\right)^2-2\ge-2\)

\(\text{hay }A\ge0\)

\(\text{Vậy }GTNN_A=-2\text{, dấu bằng xảy ra khi x = -1}\)

19 tháng 8 2019

\(A=2x^2+4x=2\left(x^2+2x\right)\)

\(=2\left(x^2+2x+1-1\right)\)

\(=2\left[\left(x+1\right)^2-1\right]\)

\(=2\left(x+1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

22 tháng 10 2020

A = -x2 - 4x - y2 + 2y

= -( x2 + 4x + 4 ) - ( y2 - 2y + 1 ) + 5

= -( x + 2 )2 - ( y - 1 )2 + 5 ≤ 5 ∀ x, y

Dấu "=" xảy ra khi x = -2 ; y = 1

=> MaxA = 5 <=> x = -2 ; y = 1

B = \(\frac{2020}{x^2+2x+6}\)

Để B đạt GTLN => x2 + 2x + 6 đạt GTNN

Ta có : x2 + 2x + 6 = ( x2 + 2x + 1 ) + 5 = ( x + 1 )2 + 5 ≥ 5 ∀ x

Dấu "=" xảy ra khi x = -1

=> Min( x2 + 2x + 6 ) = 5

=> MaxB = 2020/5 = 404 khi x = -1

C = \(\frac{15}{6x-x^2-14}\)

Để C đạt GTNN => 6x - x2 - 14 đạt GTLN

Ta có : 6x - x2 - 14 = -( x2 - 6x + 9 ) - 5 = -( x - 3 )2 - 5 ≤ -5 ∀ x

Dấu "=" xảy ra khi x = 3

=> Max( 6x - x2 - 14 ) = -5

=> MinC = 15/(-5) = -3 khi x = 3

10 tháng 8 2018

a, \(A=x^2-6x+11\)

\(=x^2-2.3.x+9+2\)

\(=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)

Vậy \(MinA=3\Leftrightarrow x=3\)

b, \(B=2x^2+10x-1\)

\(=2\left(x^2+5x\right)-1\)

\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)

Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)

c, \(C=5x-x^2\)

\(=-x^2+5x\)

\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)

\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)

Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)