K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 11 2019

Điều kiện \(a>0\)

\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)

\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)

Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)

NV
16 tháng 11 2019

\(A=x\sqrt{2-x^2}\le\frac{1}{2}\left(x^2+2-x^2\right)=1\)

Dấu "=" xảy ra khi \(x=1\)

7 tháng 4 2017

Lời giải

a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)

b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)

19 tháng 1 2022

\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)

Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\ \ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\ =2\sqrt{16}+1\\ =9\)

Dấu "=" xảy ra

 \(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

 

30 tháng 3 2017

a)\(x -1 >5 ⇔ x > 1 ⇒ x^4 > x^3 > x^2 > x > 1 \)

\(⇒ 5x^4 > x^4 + x^3 + x^2 + x + 1 > 5 \)

\(⇒ 5x^4 (x-1) > (x-1)( x^4 + x^3 + x^2 + x + 1) = x^5 -1 > 5 (x-1) \)

b)\(x^5 + y^5 – x^4y – xy^4 = (x + y)(x^4 – x^3y + x^2y^2 – xy^3 + y^4) – xy(x^3 + y^3) \)

\(= (x + y) [( x^4 – x^3y+ x^2y^2 – xy^3 + y^4) – xy(x^2 – xy + y^2)] \)

\(= (x + y) [(x^4+2x^2y^2+y^4) - 2xy(x^2+y^2)] \)

\(= (x + y) (x - y)^2(x^2 + y^2) ≥ 0 \)

c)\(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} )^2\)

\(= 4(a + b + c) + 3 + 2\sqrt {4a + 1} \sqrt {4b + 1} + 2\sqrt {4a + 1} \sqrt {4c + 1} + 2\sqrt {4b + 1} \sqrt {4c + 1} \)

\( \le 4(a + b + c) + 3 + (4a + 1) + (4b + 1) + (4a + 1) + (4c + 1) + (4b + 1) + (4c + 1) \)

\(\le 12(a + b + c) + 9 \le 21 \le 25\)

Câu 1: D

Câu 3: C

NV
16 tháng 11 2019

\(A=\frac{\sqrt[4]{3}}{2}.\frac{2x}{\sqrt[4]{3}}\sqrt{4-x^4}\le\frac{\sqrt[4]{3}}{4}\left(\frac{4x^2}{\sqrt{3}}+4-x^4\right)=\frac{\sqrt[4]{3}}{4}\left[\frac{16}{3}-\left(x^2-\frac{2\sqrt{3}}{3}\right)^2\right]\le\frac{4\sqrt[4]{3}}{3}\)

\(A_{max}=\frac{4\sqrt[4]{3}}{3}\) khi \(x^2=\frac{2\sqrt{3}}{3}\)

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\) 2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2 3. bất phương trình nào sau đây tương đương với...
Đọc tiếp

1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số

A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)

2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số

A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2

3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0

A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0

C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0

4. bất phương trình ax+b > 0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

5.bất phương trình ax+b>0 có tập nghiệm R khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

6.bất phương trình ax+b \(\le\)0 vô nghiệm khi

A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)

7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\)

A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)

MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT

0