Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.Áp dụng bđt Cô-si, tìm GTLN:
a)\(y=\frac{5x}{x^2+4};x>0\)
b)\(y=\frac{x^2}{\left(x^2+3\right)^3}\)
\(y=\frac{5x}{x^2+4}\le\frac{5x}{2\sqrt{x^2.4}}=\frac{5}{4}\)
Dấu "=" xảy ra khi \(x=2\)
\(y=\frac{x^2}{\left(x^2+\frac{3}{2}+\frac{3}{2}\right)^3}\le\frac{x^2}{\left(3\sqrt[3]{x^2.\frac{3}{2}.\frac{3}{2}}\right)^3}=\frac{4x^2}{243x^2}=\frac{4}{243}\)
Dấu "=" xảy ra khi \(x=\frac{\sqrt{6}}{2}\)
Điều kiện \(a>0\)
\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)
\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)
Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)
\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)
Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\
\ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\
=2\sqrt{16}+1\\
=9\)
Dấu "=" xảy ra
\(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
@Ace Legona: sir tra hộ e câu này đúng hay sai đề vs ,nhẩm mãi không ra điểm rơi
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
Lời giải
a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)
b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(A=\frac{\sqrt[4]{3}}{2}.\frac{2x}{\sqrt[4]{3}}\sqrt{4-x^4}\le\frac{\sqrt[4]{3}}{4}\left(\frac{4x^2}{\sqrt{3}}+4-x^4\right)=\frac{\sqrt[4]{3}}{4}\left[\frac{16}{3}-\left(x^2-\frac{2\sqrt{3}}{3}\right)^2\right]\le\frac{4\sqrt[4]{3}}{3}\)
\(A_{max}=\frac{4\sqrt[4]{3}}{3}\) khi \(x^2=\frac{2\sqrt{3}}{3}\)