Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
(5x+1)(5x−1)−25(x+3)(x−1)=4(5x+1)(5x−1)−25(x+3)(x−1)=4
⇔25x2−1−25x2−50x+75=4⇔25x2−1−25x2−50x+75=4
⇔−50x+70=0⇔−50x+70=0
⇔x=7050⇔x=7050
Vậy B=7050
B=3x2-5x= 3(x2-\(\frac{3}{5}\)x)
=3 (x2-2.\(\frac{3}{10}\)x+\(\frac{9}{100}\)-\(\frac{9}{100}\))
=3(x-\(\frac{3}{10}\))2-\(\frac{27}{100}\)\(\ge\)-\(\frac{27}{100}\)
Vậy Bmin =-\(\frac{27}{100}\)<=> x=\(\frac{3}{10}\)
3B = 9x^2 + 15x - 18
= (3x+ 5/2)^2 - 976/4
> hoặc = -97/4
<=> B > hoặc = -97/12
Dấu "=" xảy ra <=> 3x+5/2 = 0
<=> x = -5/6
Vậy GTNN của B là B = -97/12 <=> x = -5/6
1a) ta có \(A=3\left(x^2-x+\frac{5}{3}\right)=3\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{17}{12}\right)\)
\(=3\left(x-\frac{1}{2}\right)^2+\frac{17}{4}\)
đến đây thì tự đánh giá nhé
các câu kia tương tự nhé, riêng câu 1b thì tách ra và rút gọn rồi làm tương tự
Ta có : \(A=1-x^2+x\)
\(\Rightarrow A=-\left(x^2-x-1\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}-\frac{5}{4}\right)\)
\(\Rightarrow A=-\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}\)
\(\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
Vì \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\)
Nên : \(A=-\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\forall x\)
Vậy Amax = \(\frac{5}{4}\) khi \(x=\frac{1}{2}\)
Ta có : \(B=5x-x^2\)
\(=-\left(x^2-5x\right)\)
\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)
\(=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}\)
B\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì \(-\left(x-\frac{5}{2}\right)^2\) \(\text{≤ }0∀x \)
Nên : B \(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\) \(\text{≤ }\frac{25}{4}∀x\)
Vậy \(B_{min}=\frac{25}{4}\) khi \(x=\frac{5}{2}\)
A(x) = -3. (x2 - \(\frac{5}{3}\)x - \(\frac{1}{3}\)) = - 3. [(x2 - 2.x. \(\frac{5}{6}\) + \(\frac{25}{36}\)) - \(\frac{37}{36}\)]= -3. (x - \(\frac{5}{6}\))2 + \(\frac{37}{12}\) \(\le\) (-3).0 + \(\frac{37}{12}\) = \(\frac{37}{12}\) với mọi x
=> A lớn nhất = \(\frac{37}{12}\) khi x - \(\frac{5}{6}\) = 0 <=> x = \(\frac{5}{6}\)
+) Khi lấy x rất lớn thì x 2 rất lớn => -3x2 rất nhỏ và 3x2 lớn hơn 5x => -3x2 rất nhỏ và nhỏ hơn 5x
=> A càng nhỏ khi x lấy giá trị càng lớn
=> A không tồn tại giá trị nhỏ nhất
B=\(3x^2-5x=3x^2-2.\sqrt{3}.\left(\frac{5}{\sqrt{3}}\right)x+\frac{25}{3}-\frac{25}{3}\)
B=\(\left(\sqrt{3}x-\frac{5}{\sqrt{3}}\right)^2-\frac{25}{3}\ge-\frac{25}{3}\)
B đạt GTNN là \(-\frac{25}{3}\) khi \(\sqrt{3}x=\frac{5}{\sqrt{3}}\)
\(x=\frac{5}{3}\)