K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

2 tháng 9 2017

nhìu dữ

a)3/2

b)-1/3

c)-5/6

d)0

e)-1/2

Bài 2

a=3

b=1/2

c=-1/3

d=0

e=9

f=-2/3

2 tháng 9 2017

mk ko làm rõ đâu  nhe

27 tháng 9 2024

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9 2024

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9

 

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4