K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a2+4b2-10a=(a2-10a+25)+4b2-25

=(a-52)+4b2 -25>25

17 tháng 12 2017

bn ơi bn làm z thì ngoài ngoặc còn 4ab2-25 nên phải là > 4ab2-25 chứ bn

15 tháng 12 2016

Q=a^2+4b^2-10a

Q=a^2-5a-5a+25+4b^2-25

Q=a(a-5)-5(a-5)+4b^2-25

Q=(a-5)^2+4b^2-25 >=-25

Dấu "=" xảy ra khi a-5=0;b=0

<=> a=5;b=0

Vậy Min Q=-25 khi a=5;b=0

4 tháng 3 2017

a2+4b2-10a

=a2-10a+4b2

=a2-10a+25+4b2-25

=(a-5)2+4b2-25

Vì (a-5)2>=0 với mọi a.Dấu bằng xảy ra khi a-5=0

<=> a =5

Lại có 4b2>=0 với mọi b.Dấu bằng xảy ra khi 4b2=0

<=> b2 =0

<=> b =0

=>(a-5)2+4b2-25>=-25 với mọi a;b.Dấu bắng xảy ra khi a=5;b=0

Vậy giá trị nhỏ nhất của Q là -25 tại a=5;b=0

15 tháng 12 2016

\(Q=a^2-10a+25-25+4b^2\)

\(Q=\left(a^2-2.5.a+5^2\right)+4b^2-25=\left(a-5\right)^2+4b^2-25\)

\(Q\ge-25\) đẳng thức khi \(\hept{\begin{cases}a=5\\b=0\end{cases}}\)

15 tháng 12 2016

Q=a2+4b2-10a

=a2-10a+25-25+4b2

=(a-5)2+4b2-25

\(\Rightarrow\left(a-5\right)^2+4b^2\ge0\) voi moi a

\(\Leftrightarrow\left(a-5\right)^2+4b^2\ge-25\)

Vay GTNN la -25

Dau "=" xay ra khi : a-5=0 \(\Rightarrow\)a=5

                              4b=0 \(\Rightarrow\)b=0

30 tháng 11 2016

a2 + 4b2 - 10a = (a2 - 10a + 25) + 4b2 - 25

= (a - 5)2 + 4b2 - 25\(\ge25\)

3 tháng 1 2017

Sai rồi cái này nhỏ nhất phải là -25 chứ

7 tháng 3 2015

A= 4a^2 + 4ab + 4b^2 - 12a - 12b + 12 
=(2a+2b-3)^2 + 3 
=>minA = 3

29 tháng 1 2017

Ta có:

P=4a2+4ab+4b2-12a-12b+12

  =[(4a2-12a+9)+2b(2a-3)+b2]+3b2-6b+12

  =(2a+b-3)2+3(b-1)2+9    

Dấu "=" xảy ra khi 2a+b-3=0 và b-1=0

                       <=>2a+1-3=0 và  b=1

                       <=>a=1 và b=1

Vậy MinP=9 <=> a=b=1

Minh Lê Thái Bình xem lại cách giải nha :))))))))

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0