Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
C1 :
\(B=\frac{4\left(x^2+x+1\right)}{4\left(x^2+2x+1\right)}=\frac{3\left(x^2+2x+1\right)}{4\left(x^2+2x+1\right)}+\frac{x^2-2x+1}{4\left(x^2+2x+1\right)}=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x^2+2x+1\right)}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
C2 :
\(B=\frac{x^2+x+1}{x^2+2x+1}\)\(\Leftrightarrow\)\(Bx^2-x^2+2Bx-x+B-1=0\)
\(\Leftrightarrow\)\(\left(B-1\right)x^2+\left(2B-1\right)x+\left(B-1\right)=0\)
+) Nếu \(B=1\) thì \(x=0\)
+) Nếu \(B\ne1\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(2B-1\right)^2-4\left(B-1\right)\left(B-1\right)\ge0\)
\(\Leftrightarrow\)\(4B^2-4B+1-4B^2+8B-4\ge0\)
\(\Leftrightarrow\)\(4B-3\ge0\)
\(\Leftrightarrow\)\(B\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=1\)
a) \(ĐKXĐ:x\ne\pm1\)
\(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)
\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow Q=\frac{-1}{x+1}\)
b) Khi \(\left|x+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)
Thay \(x=-3\)vào Q ta được :
\(Q=\frac{-1}{-3+1}=\frac{1}{2}\)
c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow x\in\left\{-2;0\right\}\)
Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)
c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !
Xin lỗi vì đọc nhầm đề
a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)
\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)
d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)
Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)
a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)
\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)
d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)
\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng nhé
e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)
\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}\)
\(Q=\frac{x^2+2x+1+x^2-2x+1}{\left(x+1\right)^2}\)
\(Q=\frac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x+1\right)^2}\)
\(Q=\frac{\left(x+1\right)^2}{\left(x+1\right)^2}+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\)
\(Q=1+\frac{\left(x-1\right)^2}{\left(x+1\right)^2}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow Q\ge1+0=1\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy........
Giá trị nhỏ nhất của biểu thức Q=\(\frac{1}{2}\)
k mk nha !
\(\frac{x^2+1}{x^2+1}=1\)lại có \(\frac{x}{2x}\)mà\(\frac{x}{x}=1\) nên kết quả bằng \(\frac{1}{2}\)