K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

DS=3.(79-15/4)=903/4

28 tháng 12 2016

\(A=3a^2+27b^2+5c^2-18ab-30c-237\)

\(=\left(3a^2-18ab+27b^2\right)+\left(5c^2-30c+45\right)-282\)

\(=3\left(a-3b\right)^2+5\left(c-3\right)^2-282\ge-282\)

Vậy GTNN là - 282 đạt được khi \(\hept{\begin{cases}a=3b\\c=3\end{cases}}\)

13 tháng 3 2017

A=3a2+27b2+5c2−18ab−30c+237

A=3a2+27b2−18ab+5c2−30c+237

A= 3(a2+9b2−6ab)+5(c2 - 6c)+237

A= 3(a-3b)2 +5 ( c2 - 6c + 9)+192

A=3(a-3b)2 +5(c-3)2 +192

\(\Leftrightarrow\)Amix = 192

20 tháng 1 2017

A=\(A=3\left[a^2+\left(3b\right)^2-6ab\right]+5\left(c^2-6c+9\right)+237-45\ge237-45\)

14 tháng 2 2017

\(A=3\left(a^2+9b^2-6ab\right)+5\left(c^2-6c+9\right)+\left(237-5.9\right)\)

\(A=3\left(a-3b\right)^2+5\left(c-3\right)^2+\left(237-45\right)\ge237-45\)

GTNN A=(237-45)=3.79-3.15=3.(79-15)=3.64=192

đẳng thức khi \(\left\{\begin{matrix}a-3b=0\\c-3=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=3b\\c=3\end{matrix}\right.\)

27 tháng 12 2016

a) bé hệ số lại

A/3=a^2+9b^2+5/3.c^2-6ab-10c+79

=(a-3b)^2+5/3(c^2-2.3/2.c+9/4)+79-5/3.9/4

=(a-3b)^2+5/3(c-3/2)^2+79-15/4

Amin =3.(79-15/4)

đẳng thức khi a=3b và c=3/2

Kiểm tra số liệu cộng trừ nhân chia

27 tháng 12 2016

\(ax+\frac{b}{\left(x^2-4\right)}-\frac{1}{\left(x-2\right)}=\frac{2}{x}+2\) đúng vậy ko

Kiểu gì cũng được nhưng nếu không đúng => lạc đề

Lần sau gặp pHân số dùng f(x) viết đi

8 tháng 1 2017

\(\left(a^2+\frac{b^2}{4}+\frac{9}{4}+ab-3a-\frac{3}{2}b\right)+\frac{3}{4}\left(b^2-2b+1\right)-\frac{9}{4}-\frac{3}{4}+2013\\ \)

\(\left(a+\frac{b-3}{2}\right)^2+\frac{3}{4}\left(b-1\right)^2+2013-3\)

GTNN=2010

Khi b=1 và a= 1

29 tháng 10 2018

Hóa ra OLM vẫn còn ADMIN

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

29 tháng 10 2015

A = (a- 2a3 + a2) + 2.(a- 2a + 1) + 3 = (a- a)2 + 2.(a - 1)+ 3 > 0 + 2.0 + 3

Dấu "=" xảy ra khi a2 - a = 0 và a - 1 = 0 <=> a = 1

Vậy Min A = 3 tại a = 1

29 tháng 12 2017
  1. Biến đổi: a4-2a3+a2+2a2-4a+2+3=(a2-a)2+2(a-1)2+3>=3=>Amin=3<=>x=1
  2.  
30 tháng 5 2017

\(A=\left(a^2\right)^2-2a^3+2a^2+a^2-4a+2+3\\ =\left(\left(a^2\right)^2-2a^2a+a^2\right)+2\left(a^2-2a+1\right)+3\ge3\)

\(=a^2\left(a^2-2a+1\right)+2\left(a^2-2a+1\right)+3\ge3\\ =2a^2\left(a-1\right)^4+3\ge3\)

Vậy GTNN của biểu thức A là 3 tại \(a=0\)hoặc \(a=1\).

9 tháng 6 2019

\(a^4-2a^3+3a^2-4a+5\)

\(=a^4-2a^3+a^2+2a^2-4a+2+3\)

\(=\left(a^4-2a^3+a^2\right)+2\left(a^2-2a+1\right)+3\)

\(=\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Dấu "=" xảy ra khi a = 1 

Vậy với a = 1 thì \(A_{Min}=3\)