Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(A=3\left[a^2+\left(3b\right)^2-6ab\right]+5\left(c^2-6c+9\right)+237-45\ge237-45\)
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
55555555555555555
666666666666666666666666666
88888888888888888888
\(A=3\left(a^2+9b^2-6ab\right)+5\left(c^2-6c+9\right)+\left(237-5.9\right)\)
\(A=3\left(a-3b\right)^2+5\left(c-3\right)^2+\left(237-45\right)\ge237-45\)
GTNN A=(237-45)=3.79-3.15=3.(79-15)=3.64=192
đẳng thức khi \(\left\{\begin{matrix}a-3b=0\\c-3=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=3b\\c=3\end{matrix}\right.\)
a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Khi \(x=y\)
b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
khi x=y=z
c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
khi \(\frac{a}{x}=\frac{b}{y}\)
a) bé hệ số lại
A/3=a^2+9b^2+5/3.c^2-6ab-10c+79
=(a-3b)^2+5/3(c^2-2.3/2.c+9/4)+79-5/3.9/4
=(a-3b)^2+5/3(c-3/2)^2+79-15/4
Amin =3.(79-15/4)
đẳng thức khi a=3b và c=3/2
Kiểm tra số liệu cộng trừ nhân chia
\(ax+\frac{b}{\left(x^2-4\right)}-\frac{1}{\left(x-2\right)}=\frac{2}{x}+2\) đúng vậy ko
Kiểu gì cũng được nhưng nếu không đúng => lạc đề
Lần sau gặp pHân số dùng f(x) viết đi