Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5-8x+x^2=-8x+x^2+6-11\)
\(=\left(x-4\right)^2-11\)
Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)
Vậy Amin = - 11 <=> x = 4
\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)
\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy Bmax = 9 <=> x = - 1
\(B=x^2+8x+16-16\)
\(B=\left(x+4\right)^2-16\)
có : \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-16\ge-16\)
\(\Rightarrow B\ge-16\)
Dấu "=" xảy ra khi
(x + 4)2 = 0 => x + 4 = 0 => x = - 4
vậy Min B = -16 khi x = -4
\(B=x^2+8x\)
\(=x^2.2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
Vì \(\left(x+4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+4\right)^2-16\ge0-16;\forall x\)
Hay\(B\ge-16;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy MIN B= -16 \(\Leftrightarrow x=-4\)
\(B=x^2-8x-17\)
\(=\left(x^2-8x+16\right)-33\)
\(=\left(x-4\right)^2-33\ge-33\)
vậy min B=-33 khi x=4
\(C=x^2+5x+1\)
\(=\left(x^2+5x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
vậy min C = -21/4 khi x= -5/2
Ta có : \(B=x^2+8x-17\)
\(\Rightarrow B=x^2+8x+16-33\)
\(\Rightarrow B=\left(x+4\right)^2-33\)
Mà ; \(\left(x+4\right)^2\ge0\forall x\)
Nên : \(B=\left(x+4\right)^2-33\ge-33\forall x\)
Vậy GTNN của B là -33 khi x = -4
\(C=x^2-8x+20\\ C=x^2-8x+16+4\\ C=\left(x-4\right)^2+4\ge4\)
\(MinC=0\Leftrightarrow x-4=0\Leftrightarrow x=4\\ MinC=4\Leftrightarrow x=4\)
Nhớ cho 5 sao luôn nhé
Ta có: \(4x^2-8x+7=4x^2-8x+4+3\left(2x-2\right)^2+3\ge3\)
\(\Rightarrow B>0\)
Vậy B có GTLN \(\Leftrightarrow\left(2x-2\right)^2+3\)có GTNN
Mà \(\left(2x-2\right)^2+3\ge3\Rightarrow Min\left(4x^2=8x+7\right)=3\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(\Rightarrow\)Max B = 3\(\Leftrightarrow x=1\)
P=x^3+8x-25
P=x^2+2.x.4-4^2-16-25
P=(x+4)^2-41
Có: (x+4)^2≥0 với mọi x
=>(x+4)^2-41 ≥-41 với mọi x
Dấu"=" xảy ra <=>(x+4)^2-41=-41
(x+4)^2=0
x+4=0
x=-4
Vậy GTNN của biểu thức là -41 khi x=-4