Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2≤0+21=21
Dấu = khi x+4=0 <=>x=-4
Bài 1:
c)C=x2+5x+8
=x2+5x+\(\left(\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)
=\(\left(x+\dfrac{5}{2}\right)^2\)+\(\dfrac{7}{4}\)\(\ge\dfrac{7}{4}\)
Vậy \(C_{min}=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{5}{2}\)
Bài 5:
a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1
Vì ( x - 3 )2 \(\ge\)0 nên ( x - 3 )2 + 1 \(\ge\)1
Giá trị nhỏ nhất của A là 1
b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9
Vì ( x + 3 )\(\ge\)0 nên ( x + 3 ) - 9\(\ge\)- 9
Giá trị nhỏ nhất của B là - 9
5 - A\(=x^2-6x+10\)
A\(=x^2-3x-3x+9+1\)
A\(=x\left(x-3\right)-3\left(x-3\right)+1\)
A\(=\left(x-3\right)\left(x-3\right)+1\)
A\(=\left(x-3\right)^2+1\)
Vì \(^{\left(x-3\right)^2\ge0\forall x}\)
\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)
Hay A\(\ge1\forall x\)
Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
B\(=x\left(x+6\right)\)
B\(=x^2+6x\)
B\(=x\left(x+3\right)+3\left(x+3\right)-9\)
B\(=\left(x+3\right)\left(x+3\right)-9\)
B\(=\left(x+3\right)^2-9\)
Vì\(\left(x+3\right)^2\ge0\forall x\)
\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)
Hay B\(\ge-9\forall x\)
Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
1.phân tích đa thức thành nhân tử
x3 - 5x2 + 8x - 4
= x3 - x2 - 4x2 + 4x + 4x - 4
= x2( x - 1 ) - 4x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - 4x + 4 ) = ( x - 1 )( x - 2 )2
2.Cho các số a,b,c thỏa mãn a+b+c=3/2. Tìm giá trị nhỏ nhất của biểu thức P= a2 + b2 + c2
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{\left(\frac{3}{2}\right)^2}{3}=\frac{3}{4}\)
Đẳng thức xảy ra <=> a=b=c1/2. Vậy MinP = 3/4
Bài giải
\(B=\frac{x^2+1}{x^2-x+1}=\frac{x^2+1-x+x}{x^2-x+1}=\frac{x^2+1-x}{x^2-x+1}+\frac{x}{x^2-x+1}=1+\frac{x}{x^2-x+1}\)
\(B\) nhỏ nhất khi \(\frac{x}{x^2-x+1}\) nhỏ nhất
\(\Leftrightarrow\text{ }x\text{ nhỏ nhất}\text{ }\Rightarrow\text{ }x=0\)
Thay \(x=0\) ta có :
\(B=\frac{x^2+1}{x^2-x+1}=\frac{0^2+1}{0^2-0+1}=\frac{1}{1}=1\)
Vậy \(GTNN\) của \(B=1\)
+) \(A=x^2+2x-9=x^2+2x+1-10=\left(x+1\right)^2-10\ge-10\)
Min A = -10 \(\Leftrightarrow x=-1\)
+) \(B=x^2+5x-1=x^2+5x+\frac{25}{4}-\frac{29}{4}=\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\ge\frac{-29}{4}\)
Min B = -29/4 \(\Leftrightarrow x=\frac{-5}{2}\)
+) \(C=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\ge-4\)
Min C = -4 \(\Leftrightarrow x=-2\)
+) \(D=x^2-8x+17=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)
Min D = 1 \(\Leftrightarrow x=4\)
+) \(E=x^2-7x+1=x^2-7x+\frac{49}{4}-\frac{45}{4}=\left(x-\frac{7}{2}\right)-\frac{45}{4}\ge-\frac{45}{4}\)
Min E = -45/4 \(\Leftrightarrow x=\frac{7}{2}\)
A = x2 + 2x - 9
= ( x2 + 2x + 1 ) - 10
= ( x + 1 )2 - 10 ≥ -10 ∀ x
Đẳng thức xảy ra <=> x + 1 = 0 => x = -1
=> MinA = -10 <=> x = -1
B = x2 + 5x - 1
= ( x2 + 5x + 25/4 ) - 29/4
= ( x + 5/2 )2 - 29/4 ≥ -29/4 ∀ x
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinB = -29/4 <=> x = -5/2
C = x2 + 4x
= ( x2 + 4x + 4 ) - 4
= ( x + 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x + 2 = 0 => x = -2
=> MinC = -4 <=> x = -2
D = x2 - 8x + 17
= ( x2 - 8x + 16 ) + 1
= ( x - 4 )2 + 1 ≥ 1 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MinD = 1 <=> x = 4
E = x2 - 7x + 1
= ( x2 - 7x + 49/4 ) - 45/4
= ( x - 7/2 )2 - 45/4 ≥ -45/4 ∀ x
Đẳng thức xảy ra <=> x - 7/2 = 0 => x = 7/2
=> MinE = -45/4 <=> x = 7/2
\(B=x^2-8x-17\)
\(=\left(x^2-8x+16\right)-33\)
\(=\left(x-4\right)^2-33\ge-33\)
vậy min B=-33 khi x=4
\(C=x^2+5x+1\)
\(=\left(x^2+5x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
vậy min C = -21/4 khi x= -5/2
Ta có : \(B=x^2+8x-17\)
\(\Rightarrow B=x^2+8x+16-33\)
\(\Rightarrow B=\left(x+4\right)^2-33\)
Mà ; \(\left(x+4\right)^2\ge0\forall x\)
Nên : \(B=\left(x+4\right)^2-33\ge-33\forall x\)
Vậy GTNN của B là -33 khi x = -4