Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x ta có:
|x - 2001| = |2001 - x|
=> A = |x - 2002| + |2001 - x|
Với mọi x ta cũng có:
|x - 2002| + | 2001 - x| \(\ge\)|(x - 2002) + (2001 - x)|
A \(\ge\) |1|
A \(\ge\) 1
Dấu bằng xảy ra <=> (x - 2002).(2001 - x) \(\ge\) 0
=> x - 2002 \(\ge\) 0; 2001 - x \(\ge\) 0 (1)
hoặc x - 2002 \(\le\) 0; 2001 - x \(\le\) 0 (2)
Từ (1) => x > hoặc = 2002; x < hoặc = 2001 => x không có giá trị thoả mãn
Từ (2) => x < hoặc = 2002 ; x > hoặc = 2001 => 2001 \(\le\) x \(\le\) 2002
Vậy 2001 \(\le\) x \(\le\) 2002 thì A có giá trị nhỏ nhất = 1
Có f(1) = \(1^4\)+2.\(1^3\)-2.\(1^2\)-6.1+5 = 1+2-2-6+5 = 0
=>1 là 1 nghiệm của f(x)
Có f(-1) = \(\left(-1\right)^4\)+2.\(\left(-1\right)^3\)-2.\(\left(-1\right)^2\)-6.(-1)+5 = 1-2-2+6+5 = 8
=>-1 không là 1 nghiệm của f(x)
Có f(2) = \(2^4\)+2.\(2^3\)-2.\(2^2\)-6.2+5 = 16+16-8-12+5 = 17
=>2 không là 1 nghiệm của f(x)
Có f(-2) = \(\left(-2\right)^4\)+2.\(\left(-2\right)^3\)-2.\(\left(-2\right)^2\)-6.(-2)+5 = 16-16-8+12+5 = 9
=>-2 không là 1 nghiệm của f(x)
Vậy 1 là 1 nghiệm của f(x)
Ta có :
\(\left|x-1,5\right|+\left|2,5-x\right|=0\)
Mà \(\left\{{}\begin{matrix}\left|x-1,5\right|\ge0\\\left|2,5-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-1,5\right|=0\\\left|2,5-x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) (vô lí)
Vậy ko tìm dc x thỏa mãn theo yêu cầu
c, \(\left(7-3x\right)\left(2x+1\right)=0\)
=> \(7-3x=0\) hoặc \(2x+1=0\)
\(3x=7-0\) hoặc \(2x=0-1\)
\(3x=7\) hoặc \(2x=-1\)
\(x=7:3\) hoặc \(x=-1:2\)
\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)
Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)
a) Ta có: \(x^4\ge0\Rightarrow N\left(x\right)=x^4+2\ge2\)
\(\Rightarrow\)đa thức N(x) vô nghiệm
Vậy đa thức N(x) vô nghiệm với mọi x
b) Ta có: \(x^{10}\ge0\Rightarrow M\left(x\right)=x^{10}+7\ge7\)
\(\Rightarrow\)đa thức M(x) vô nghiệm
Vậy đa thức M(x) không có nghiệm với mọi giá trị của x
c) Ta có: \(-2x^2\le0\Rightarrow P\left(x\right)=-2x^2-5\le-5\)
\(\Rightarrow\)đa thức P(x) vô nghiệm
Vậy đa thức P(x) không có nghiệm với mọi giá trị của x
a) N(x) = x4 + 2
Ta có: x4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên x4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là N(x) ≠ 0 với mọi x
Vậy N(x) không có nghiệm.
a) Gọi \(A=1-x^2\)
Ta có: \(x^2\ge0\Rightarrow-x^2\le0\Rightarrow A=1-x^2\le1\)
Dấu " = " khi \(x^2=0\Rightarrow x=0\)
Vậy \(MAX_A=1\) khi x = 0
b) Đặt \(B=-3y^2\)
Ta có: \(3y^2\ge0\Rightarrow-3y^2\le0\)
Dấu " = " khi \(-3y^2=0\Rightarrow y=0\)
Vậy \(MAX_B=0\) khi y = 0
c) Đặt \(C=10-\left(2x-1\right)^2\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow-\left(2x-1\right)^2\le0\)
\(\Rightarrow10-\left(2x-1\right)^2\le10\)
Dấu " = " khi \(\left(2x-1\right)^2=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)
Vậy \(MAX_C=10\) khi \(x=\frac{1}{2}\)
Thay x=1 vào H(x) ta có :
\(1^2+m^2\cdot1-10=0\)
\(\Leftrightarrow1+m^2-10=0\\ \Leftrightarrow m^2=9\\ \Leftrightarrow m=\pm3\)
Thay m=3 vào H(x) ta có:
\(x^2+3^2x-10=0\)
\(\Leftrightarrow x^2+9x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(10x-10\right)=0\\ \Leftrightarrow x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\)
Tương tự thay \(m=-3\) (bn tự làm nha)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\)
Vậy.........................................................