Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 vào H(x) ta có :
\(1^2+m^2\cdot1-10=0\)
\(\Leftrightarrow1+m^2-10=0\\ \Leftrightarrow m^2=9\\ \Leftrightarrow m=\pm3\)
Thay m=3 vào H(x) ta có:
\(x^2+3^2x-10=0\)
\(\Leftrightarrow x^2+9x-10=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(10x-10\right)=0\\ \Leftrightarrow x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+10\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+10=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\)
Tương tự thay \(m=-3\) (bn tự làm nha)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-10\end{matrix}\right.\)
Vậy.........................................................
Có f(1) = \(1^4\)+2.\(1^3\)-2.\(1^2\)-6.1+5 = 1+2-2-6+5 = 0
=>1 là 1 nghiệm của f(x)
Có f(-1) = \(\left(-1\right)^4\)+2.\(\left(-1\right)^3\)-2.\(\left(-1\right)^2\)-6.(-1)+5 = 1-2-2+6+5 = 8
=>-1 không là 1 nghiệm của f(x)
Có f(2) = \(2^4\)+2.\(2^3\)-2.\(2^2\)-6.2+5 = 16+16-8-12+5 = 17
=>2 không là 1 nghiệm của f(x)
Có f(-2) = \(\left(-2\right)^4\)+2.\(\left(-2\right)^3\)-2.\(\left(-2\right)^2\)-6.(-2)+5 = 16-16-8+12+5 = 9
=>-2 không là 1 nghiệm của f(x)
Vậy 1 là 1 nghiệm của f(x)
mình ra từ hồi chiều nhưng bây giờ mới rảnh để chỉ cho bạn, xin lỗi nhé
x - y = 2
<=> y = x - 2
\(A=xy+4\\ =x\left(x-2\right)+4\\ =x^2-2x+4\\ =\left(x-1\right)^2+3\)
có \(\left(x-1\right)^2\ge0\forall\)
=> (x-1)2 + 3 \(\ge3\)
=> (x-1)2 + 3 min = 3
=> A min = 3 (??, mình làm min đựoc thôi, còn max thì chịu)
bài kia cũng thế, thay y = x-2 vào rồi tính ra ???
Bn "Lưu Hiền" có thể nói cho mình biết tại sao lại :
x\(^2\)- 2x+4
=> ( x - 1)\(^2\)+3
Mình ko hiểu lắm.
Bài1:
\(M=\dfrac{9-x}{4-x}=1+\dfrac{5}{4-x}\)
Để M đạt giá trị lớn nhất thì 4-x phải đặt giá trị nhỏ nhất
=>4-x đạt giá trị là số nguyên dương nhỏ nhất có thể
=>4-x=1
=>x=3
Thay x=3 vào M,ta có:
\(M=\dfrac{9-3}{4-3}=\dfrac{6}{1}=6\)
Vậy....
Bài2:
\(\left(x-2\right)^2+\left(2y-1\right)^2\)
Với mọi x;y thì \(\left(x-2\right)^2>=0;\left(2y-1\right)^2>=0\)
=>\(\left(x-2\right)^2+\left(2y-1\right)^2>=0\)
Để \(\left(x-2\right)^2+\left(2y-1\right)^2=0\) thì
\(\left(x-2\right)^2=0\) và \(\left(2y-1\right)^2=0\)
=>\(x-2=0\) và \(2y-1=0\)
=>\(x=2vay=\dfrac{1}{2}\)
Vậy....
\(M=\dfrac{9-x}{4-x}=\dfrac{5+4-x}{4-x}=\dfrac{5}{4-x}+\dfrac{4-x}{4-x}=\dfrac{5}{4-x}+1\)Để \(max_M\) thì \(\dfrac{5}{x-4}\) phải là số nguyên lớn nhất có thể
Vậy \(\dfrac{5}{x-4}=5\Rightarrow x=3\)
Thay vào biểu thức:
\(max_M=\dfrac{9-3}{4-3}=6\)
\(\left(x-2\right)^2+\left(2y-1\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(2y-1\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
17x + 4 chia hết cho 7
=> 14x + 3x + 4 - 7 chia hết cho 7
=> 14x + 3x - 3 chia hết cho 7
=> 14x + 3(x - 1) chia hết cho 7
Mà 14x chia hết cho 7 => 3(x - 1) chia hết cho 7
Lại có (3;7)=1 => x - 1 chia hết cho 7
=> x = 7.k + 1(k thuộc N)
ĐKXĐ: \(x\ne5\)
a) \(\dfrac{7-x}{x-5}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(7-x\right)=x-5\)
\(\Leftrightarrow14-2x=x-5\)
\(\Leftrightarrow-2x-x=-5-14\)
\(\Leftrightarrow-3x=-19\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
b, c) cách duy nhất mình biết là dùng Table :v
a) Ta có: \(x^4\ge0\Rightarrow N\left(x\right)=x^4+2\ge2\)
\(\Rightarrow\)đa thức N(x) vô nghiệm
Vậy đa thức N(x) vô nghiệm với mọi x
b) Ta có: \(x^{10}\ge0\Rightarrow M\left(x\right)=x^{10}+7\ge7\)
\(\Rightarrow\)đa thức M(x) vô nghiệm
Vậy đa thức M(x) không có nghiệm với mọi giá trị của x
c) Ta có: \(-2x^2\le0\Rightarrow P\left(x\right)=-2x^2-5\le-5\)
\(\Rightarrow\)đa thức P(x) vô nghiệm
Vậy đa thức P(x) không có nghiệm với mọi giá trị của x
a) N(x) = x4 + 2
Ta có: x4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên x4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là N(x) ≠ 0 với mọi x
Vậy N(x) không có nghiệm.