K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

\(C=4x^2-4xy+y^2+4x^2-16x+16+1\)

    \(=\left(2x-y\right)^2+(2x-4)^2+1\ge1\forall x;y\in R\)

Dấu "=" xảy ra<=> 2x-y=0  và   2x-4=0

                   <=>2x-y=0 và  x=2   <=>y=4 và x=

Vậy....

\(B=3x^2-12x+16\) 

   \(=x^2-12x+36+2x^2-20\) 

   \(=\left(x-6\right)^2+2x^2-20\ge-20\forall x\in R\) 

Dấu "=" xảy ra <=> \(\left(x-6\right)^2=0\)và \(2x^2=0\) 

                    <=>x1 =6 và x2 =0

Vậy....

              

9 tháng 9 2019

\(A=x^2-3x+1=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\)

Vậy GTNN của A là \(\frac{-5}{4}\)\(\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2019

\(C=10x-x^2+2=-\left(x^2-10x-2\right)\)

\(=-\left(x^2-10x+25-27\right)=-\left[\left(x-5\right)^2-27\right]\)

\(=-\left(x-5\right)^2+27\le27\)

Vậy \(C_{max}=27\Leftrightarrow x=5\)

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

31 tháng 10 2017

Hỏi đáp Toán

31 tháng 10 2017

a) 3x2 - 3y2 - 12x + 12x

= 3( x2 - y2- 4x + 4x )

= 3( x - y)( x + y)

b) 4x3 + 4xy2 + 8x2y - 16x

= 4x( x2 + y2 + 2xy - 4)

= 4x[( x + y)2 - 22]

= 4x( x + y - 2)( x + y +2)

c) x4 - 5x2 + 4

= ( x2)2 - 2.2x2 + 22 - x2

= ( x2 - 2)2 - x2

= ( x2 - 2 - x)( x2 - 2 + x)

30 tháng 6 2019

\(A=-x^2-5y^2+2xy-4x+20y+13\)

\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)

\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)

\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)

\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)

\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)

\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

30 tháng 6 2019

\(B=-7x^2-y^2+4xy+16x-2y+17.\)

\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)

\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)

\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)

\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)

\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

1 tháng 7 2019

\(A=x^2+4y^2-2xy+4x-10y+2020.\)

\(=\left(x^2-2xy+y^2\right)+\left(3y^2-6y+3\right)+\left(4x-4y\right)+2017\)

\(=\left(x-y\right)^2+3\left(y-1\right)^2+4\left(x-y\right)+2017\)

\(=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+3\left(y-1\right)^2+2013\)

\(=\left(x-y+2\right)^2+3\left(y-1\right)^2+2013\)

\(A_{min}=2013\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-y+2=0\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

1 tháng 7 2019

\(B=8x^2+y^2-4xy-12x+2y+30\)

\(=\left(4x^2-4xy+y^2\right)+\left(4x^2-8x+4\right)-\left(4x-2y\right)+26\)

\(=\left(2x-y\right)^2+4\left(x-1\right)^2-2\left(2x-y\right)+26\)

\(=\left[\left(2x-y\right)^2-2\left(2x-y\right)+1\right]+4\left(x-1\right)^2+25\)

\(=\left(2x-y-1\right)^2+4\left(x-1\right)^2+25\)

\(\Rightarrow B_{min}=25\)\(\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-y-1=0\\x=1\end{cases}}\)\(\Leftrightarrow x=y=1\)

21 tháng 10 2016

ghi rõ hơn đc ko

21 tháng 10 2016

Tìm x y sao cho bt sau đạt giá trị nhỏ nhất

M=8x2+yy2—4xy—16x+17

8 tháng 9 2019

1 Viết dưới dạng tich

a)\(49x^2y^4-36z^2t^2\)

\(=\left(7xy^2\right)^2-\left(6zt\right)^2\)

\(=\left(7xy^2-6zt\right)\left(7xy^2+6zt\right)\)

b)\(4-12xy^2+9x^2y^4\)

\(=2^2-2.2.3xy^2+\left(3xy^2\right)^2\)

=\(\left(2-3xy^2\right)^2\)

8 tháng 9 2019

1/

a) 49x2y4 - 36z2t2 = (7xy2)2 - (6zt)2 = (7xy2 - 6zt)(7xy2 + 6zt)

b) 4 - 12xy2 + 9x2y4 = 22 - 2.2.3xy2 + (3xy2)2 = (2 - 3xy2)2

4 tháng 10 2018

mk lm mẫu cho bạn 1 phần nhé

a) \(A=3x^2+y^2+10x-2xy+26\)

\(=\left(x^2-2xy+y^2\right)+2\left(x^2+5x+6,25\right)+13,5\)

\(=\left(x-y\right)^2+2\left(x+2,5\right)^2+13,5\ge13,5\)

Dấu "=" xảy ra <=>  \(x=y=-2,5\)

Vậy MIN A = 13,5  khi  x = y = - 2,5

4 tháng 10 2018

Cảm ơn Đường Quỳnh Giang nhiều nhé😊