K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

a) A = x2 - 6x + 13 = x2 - 2.x.3 + 3+4 = (x-3)2 + 4 >= 4 suy ra minA=4 
mấy câu kia giải tương tự

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

16 tháng 9 2019

\(F=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\)

\(=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\)

Đặt \(x^2-7x=a\)

\(F=\left(a-10\right)\left(a+10\right)=a^2-100\ge-100\)

\(\Rightarrow F_{min}=-100\Leftrightarrow x^2-7x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=7\end{cases}}\)

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

áp dụng công thức này mà lm câu a,b,e nhá:

\(A=ax^2+bx+c=a\left(x+\dfrac{b}{2a}\right)^2+\dfrac{4ac-b^2}{4a}\\ \left[{}\begin{matrix}A\ge\dfrac{4ac-b^2}{4a}\left(với\text{ }\text{ }\text{ }a\ge0\right)\\A\le\dfrac{4ac-b^2}{4a}\left(với\text{ }a< 0\right)\end{matrix}\right.\)

\(C=x^2+2xy+y^2+4y^2=\left(x+y\right)^2+4y^2\ge0\)

đẳng thức xảy ra khi x=y=0

vậy MIN C=0 tại x=y=0

20 tháng 6 2017

Ta có : A = x2 - 4x + 1 

=> A = x2 - 2.x.2 + 4 - 3 

=> A = (x - 2)2 - 3 

Mà : (x - 2)2 \(\ge0\forall x\in R\)

Nên :   (x - 2)2 - 3 \(\ge-3\forall x\in R\)

Vậy GTNN của A là -3 khi x = 2 

20 tháng 6 2017

\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2

Vậy gtnn của B là 10 khi x=-1/2
---

\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi x=0 hoặc x=-5

a: \(C=x^2-6x+9+2=\left(x-3\right)^2+2>=2\)

Dấu '=' xảy ra khi x=3

c: \(=x^2-4x+4+y^2-8y+16-14\)

\(=\left(x-2\right)^2+\left(y-4\right)^2-14>=-14\)

Dấu '=' xảy ra khi x=2 và y=4

9 tháng 7 2016

a) P= x2 -2x +1 +4 = (x-1)2 +4 

Ta có: (x-1)2>= 0

\(\Rightarrow\) (x-1)2 +4 >= 4

GTNN của P=4 khi x= 1

c) M= (x2-x+1/4)+(y2+6y+9)+3/4   =   (x-1/2)2 + (y+3)+3/4

Ta có: (x-1/2)2 + (y+3) >= 0

\(\Rightarrow\) (x-1/2)2 + (y+3)+3/4 >= 3/4

GTNN của Q=3/4  khi x=1/2         ;    y=-3

 

b) Q= 2(x2-3x)  =  2(x2-3x+9/4)-9/2 =  2.(x-3/2)2-9/2

ta có 2.(x-3/2)2 >=0

\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2

GTNN của Q=-9/2 khi x=3/2

9 tháng 7 2016

1 like cho mình nếu đúng nhé

haha