K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Dúng phương pháp xét giá trị riêng

Gọi dư là \(ax+b\)

Ta có: \(F\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)

Do đẳng thức đúng với mọi x nên lần lượt thử \(x=1;x=-1\)

Với x = 1 thay vào đc:

\(51=a+b\) (1)

Với x = -1 thay vào đc:

\(1=-a+b\) (2)

(1) và (2) suy ra x = 25; y = 26

Vậy dư là 25x+26

31 tháng 10 2017

Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1

Gọi thương là \(Q\left(x\right)\)

Gọi số dư là \(R\left(x\right)=ax+b\)

\(\Rightarrow F\left(x\right)=Q\left(x\right).\left(x^2-1\right)+ax+b\)

Xét nghiệm của đa thức chia

\(x^2-1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Nên ta có hệ phương trình .

\(\left\{{}\begin{matrix}P\left(1\right)=a+b=51\\P\left(-1\right)=-a+b=1\end{matrix}\right.\)

Giải hệ ra ta được :

\(\left\{{}\begin{matrix}a=25\\b=26\end{matrix}\right.\)

Vậy đa thức dư là \(25x+26\)

Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1

Gọi thương là Q(x) .Gọi số dư là R(x)=ax+b.

Khi đó : \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)

Xét với \(x=1\) thì \(f\left(1\right)=a+b\)

\(\Leftrightarrow1+1-1=a+b\Leftrightarrow a+b=1\)(1)

Xét với \(x=-1\) thì \(f\left(-1\right)=-a+b\)

\(\Leftrightarrow-1+\left(-1\right)-1=-a+b\)

\(\Leftrightarrow b-a=-3\) (2)

Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Vậy đa thức dư là \(R\left(x\right)=2x-1\)

Mình xin đánh lại dòng thứ 3 nhé , bị lỗi :

Khi đó : \(f\left(x\right)=\left(x^2-1\right)Q\left(x\right)+ax+b\)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)+ax+b\)

18 tháng 3 2021

Áp dụng định lý Bezout ta được:

f(x)f(x)chia cho x+1 dư 2 f(1)=2⇒f(−1)=4

Vì bậc của đa thức chia là 3 nên f(x)=(x+1)(x2+1)q(x)+ax2+bx+cf(x)=(x+1)(x2+1)q(x)+ax2+bx+c

=(x2+1)(x+1)q(x)+(ax2+a)a+bx+c=(x2+1)(x+1)q(x)+(ax2+a)−a+bx+c

=(x2+1)(x+1)q(x)+a(x2+1)+bx+ca=(x2+1)(x+1)q(x)+a(x2+1)+bx+c−a

=(x2+1)[(x+1)q(x)+a]+bx+ca=(x2+1)[(x+1)q(x)+a]+bx+c−a

Vì f(1)=4f(−1)=4nên ab+c=4(1)a−b+c=4(1)

Vì f(x) chia cho x2+1x2+1dư 2x+3 nên

\hept{b=2ca=3(2)\hept{b=2c−a=3(2)

Từ (1) và (2) \hepta+c=6b=2ca=3\hepta=32b=2c=92⇒\hept{a+c=6b=2c−a=3⇔\hept{a=32b=2c=92

Vậy dư f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là 32x2+2x+12