Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
- Bài này áp dụng hằng đẳng thức tổng quát của hđt số 3 và 7, nghĩa là hđt số 8 nhé!
Ta có:
f(x) = x20 + x10 + x5 + 1
f(x) = ( x20 - 1 ) + ( x10 - x2 ) + ( x5 - x ) + ( x2 - 1 ) + ( x + 3 )
f(x) = [ (x2)10 - 1 ] + x2 ( x8 - 1 ) + x ( x4 - 1 ) + ( x2 - 1 ) + ( x + 3 )
f(x) = ( x2 - 1 )( x8 + x6 + ..... + 1 ) + x2 [ (x2)4 - 1 ] + x ( x2 - 1 )( x2 + 1 ) + ( x2 - 1 ) + ( x + 3 )
f(x) = ( x2 - 1 )( x8 + x6 + ..... + 1 ) + x2 ( x2 - 1 )( x6 + x4 + x2 + 1 ) + x ( x2 - 1 )( x2 + 1 ) + ( x2 - 1 ) + ( x + 3 )
f(x) = ( x2 - 1 )[ x8 + x6 + ..... + 1 + x2 ( x6 + x4 + x2 + 1 ) + x ( x2 + 1 ) + 1 ] + ( x + 3 )
f(x) = g(x) . [ x8 + x6 + ..... + 1 + x2 ( x6 + x4 + x2 + 1 ) + x ( x2 + 1 ) + 1 ] + ( x + 3 )
=> f(x) chia g(x) dư x + 3. ( Dư có thể là đa thức có bậc nhỏ hơn đa thức chia, ko bắt buộc là số thực nhé! )
Vậy f(x) chia g(x) dư x + 3.
Vì đa thức chia là đa thức bậc 2 nên đa thức dư sẽ là bậc 1
Gọi thương là Q(x) .Gọi số dư là R(x)=ax+b.
Khi đó : \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Xét với \(x=1\) thì \(f\left(1\right)=a+b\)
\(\Leftrightarrow1+1-1=a+b\Leftrightarrow a+b=1\)(1)
Xét với \(x=-1\) thì \(f\left(-1\right)=-a+b\)
\(\Leftrightarrow-1+\left(-1\right)-1=-a+b\)
\(\Leftrightarrow b-a=-3\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy đa thức dư là \(R\left(x\right)=2x-1\)
Mình xin đánh lại dòng thứ 3 nhé , bị lỗi :
Khi đó : \(f\left(x\right)=\left(x^2-1\right)Q\left(x\right)+ax+b\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)+ax+b\)