K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$

$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$

$\Rightarrow 2z^2\vdots 3$

$\Rightarrow z\vdots 3$

Lại có:

$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$

$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)

Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$

Nếu $z=0$ thì:

$3(x-3)^2+6y^2=33$

$\Leftrightarrow (x-3)^2+2y^2=11$

$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$

$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

Nếu $z=\pm 3$ thì:

$3(x-3)^2+15y^2=15$

$\Rightarrow 15y^2\leq 15$

$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow y\in \left\{\pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

 

15 tháng 4 2019

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

25 tháng 9 2016

x2+y2+6x-3x-2xy+7=0

\(\Leftrightarrow x^2+2\left(3-y\right)x+y^2-3y+7=0\)

Coi đây là pt bật 2 ẩn x ta có

\(\Delta'=\left(3-y\right)^2-y^2+3y-7\)

\(=y^2-6y+9-y^2+3y-7\)

\(=2-3y\)

Để pt có nghiệm \(\Leftrightarrow\Delta'\le0\)

\(\Rightarrow2-3y\le0\Leftrightarrow y\le\frac{2}{3}\)

y lớn nhất \(\Rightarrow y=\frac{2}{3}\)

thay vào tính tiếp

 

17 tháng 6 2021

sao denta phẩy lại bé hơn 0 ???

7 tháng 6 2019

\(\hept{\begin{cases}x^2-y^2+t^2=21\left(1\right)\\x^2+3y^2+4z^2=101\left(2\right)\end{cases}}\)

Cộng (1) và (2) ta có :

\(2x^2+2y^2+4z^2+t^2=122\Leftrightarrow2\left(x^2+y^2+2z^2+t^2\right)-t^2=122\)

\(\Rightarrow2M=122+t^2\ge122\Rightarrow m\ge61\Rightarrow Min_M=61.\)

Khi \(t=0\Rightarrow\hept{\begin{cases}x^2-y^2=21\\x^2+3y^2+4z^2=101\left(3\right)\end{cases}.}\)

Vì x, y nguyên không âm nên :

\(\left(x-y\right)\left(x+y\right)=21\)

TH1: \(\hept{\begin{cases}x-y=1\\x+y=21\end{cases}\Leftrightarrow}\hept{\begin{cases}x=11\\y=10\end{cases}}\)Thế vào (3) ta được \(4z^2=-320\left(loại\right).\)

TH2: \(\hept{\begin{cases}x-y=3\\x+y=7\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5\\y=2\end{cases}.}\)Thế vào (3) ta được \(4z^2=64\Leftrightarrow z^2=16\Leftrightarrow z=4\left(z\ge0\right).\)

Vậy ta tìm được \(\left(x,y,z,t\right)=\left(5;2;4;0\right)\)thì \(Min_M=61.\)

7 tháng 6 2019

cộng vế 2 cái đẳng thức đề cho, đc: \(2x^2+2y^2=122-t^2-4z^2\) \(\Rightarrow x^2+y^2=61-\frac{t^2}{2}-2z^2\)

Thay vào M đc: \(M=61+\frac{t^2}{2}\) (t nguyên ko âm) => Min M = 61 khi t =0 

 Giải hệ \(\hept{\begin{cases}x^2+3y^2+4z^2=101\\x^2+y^2+2z^2=61\\x^2-y^2=21\end{cases}}\)sẽ ra đc giá trị của x2, y2, z2. nhưng hệ này vô số nghiệm thì phải

22 tháng 3 2016

(x;y) = ( 1;1 ) ; ( 0;0 ) ; ( -1;1 ) 

=> Có 3 cặp