Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2^x+1=y^3$
$\Leftrightarrow 2^x=y^3-1=(y-1)(y^2+y+1)$
Do $x,y$ là các số tự nhiên nên $y^2+y+1, y-1$ cũng là các số tự nhiên. Tích của chúng là một lũy thừa cơ số 2 nên tồn tại $m,n\in\mathbb{N}(m< n)$ thỏa mãn:
\(\left\{\begin{matrix}
y-1=2^m(1)\\
y^2+y+1=2^n\end{matrix}\right.(m+n=x)\)
\(\Rightarrow \left\{\begin{matrix} y^2-2y+1=2^{2m}\\ y^2+y+1=2^n\end{matrix}\right.\Rightarrow 3y=2^n-2^{2m}\). Từ $(1)$ cũng có $y=2^m+1$ nên:
$3(2^m+1)=2^n-2^{2m}$
$\Rightarrow 3=2^n-2^{2m}-3.2^m$
Dễ thấy nếu $m,n\geq 1$ thì vế phải chia hết cho $2$, trong khi vế trái bằng $3$ không chia hết cho $2$ (vô lý). Do đó trong 2 số $m,n$ tồn tại 1 số bằng $0$
Vì $m< n$ nên $m=0$. Khi đó: $3=2^n-4\Rightarrow 7=2^n$ (vô lý)
Vậy không tồn tại $m,n$,kéo theo không tồn tại $x,y$ thỏa mãn.
Lời giải:
Ta có: $3^x.y^2=4z^2+8z+1=(2z+2)^2-3$
$\Rightarrow (2z+2)^2=3+3^x.y^2$
Xét các TH sau:
TH1: $x=0\Rightarrow (2z+2)^2=3+y^2$
$\Leftrightarrow (2z+2)^2-y^2=3$
$\Leftrightarrow (2z+2-y)(2z+2+y)=3$ (đây là dạng phương trình tích đơn giản với các thừa số nguyên)
TH2: $x=1\Rightarrow (2z+2)^2=3+3y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3y^2=(2z+2)^2\vdots 9\Rightarrow y^2+1\vdots 3$
Điều này hoàn toàn vô lý do ta có tính chất 1 số chính phương khi chia cho $3$ có dư là $0$ hoặc $1$. Do đó $y^2+1$ chia 3 có dư là $1$ hoặc $2$.
TH3: $x\geq 2\Rightarrow (2z+2)^2=3+3^x.y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3^x.y^2=(2z+2)^2\vdots 9$
Điều này vô lý do $3\not\vdots 9$ và $3^x.y^2\vdots 9$ với mọi $x\geq 2$
Vậy.........
a) Sai đề
b) \(25-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)
Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)
\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)
Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)
\(x^2+y^2-xy-x-y< \frac{1}{2}\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y< 1\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2< 3\)
Đến đây dễ rồi
Cách lớp 8 nhé!
*y=0=>x^2+1=3026=>x^2=3025 mà x là số tự nhiên=> x=55
*y>0 => 3^y chia hết cho 3 mà 3026 chia 3 dư 2=> x^2 chia 3 dư 2 (vô lý)
Vậy x=55,y=0
Bạn có thể đi cm Số chính phương(x^2) chia 3 du 0 hoặc 1
Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)
\(\frac{z-3}{4}=\frac{3z-9}{12}\)
Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7
x=2 y=1
mình chỉ tìm được vậy thôi chúc học tốt
x3-x2+x-1=3y
x+x-1=3y
2x-1=3y