\(3^x\times y^2=4z^2+8z+1\)

Cảm ơn mọi người!...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:
Ta có: $3^x.y^2=4z^2+8z+1=(2z+2)^2-3$

$\Rightarrow (2z+2)^2=3+3^x.y^2$

Xét các TH sau:

TH1: $x=0\Rightarrow (2z+2)^2=3+y^2$

$\Leftrightarrow (2z+2)^2-y^2=3$

$\Leftrightarrow (2z+2-y)(2z+2+y)=3$ (đây là dạng phương trình tích đơn giản với các thừa số nguyên)

TH2: $x=1\Rightarrow (2z+2)^2=3+3y^2\vdots 3\Rightarrow 2z+2\vdots 3$

$\Rightarrow 3+3y^2=(2z+2)^2\vdots 9\Rightarrow y^2+1\vdots 3$

Điều này hoàn toàn vô lý do ta có tính chất 1 số chính phương khi chia cho $3$ có dư là $0$ hoặc $1$. Do đó $y^2+1$ chia 3 có dư là $1$ hoặc $2$.

TH3: $x\geq 2\Rightarrow (2z+2)^2=3+3^x.y^2\vdots 3\Rightarrow 2z+2\vdots 3$

$\Rightarrow 3+3^x.y^2=(2z+2)^2\vdots 9$

Điều này vô lý do $3\not\vdots 9$ và $3^x.y^2\vdots 9$ với mọi $x\geq 2$

Vậy.........

28 tháng 3 2020

x=2 y=1

mình chỉ tìm được vậy thôi chúc học tốt

28 tháng 3 2020

x3-x2+x-1=3y

x+x-1=3y

2x-1=3y

28 tháng 12 2018

bn ơi câu a có sai đề k

29 tháng 12 2018

a) Sai đề

b) \(25-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)

\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)

Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)

\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)

Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)

9 tháng 3 2019

a,  \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)          (2)

Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\)  (vô lí)

\(\Rightarrow x\ne0;y\ne0;z\ne0\)

Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)

\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)

Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)

\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\)   (3)

\(thay\)  \(x=2k;y=4k;z=6k\)vào (3)  ta được :

\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)

\(56k^2-28k=0\)

\(56k.\left(2k-1\right)=0\)

\(\Rightarrow k=0\)(loại)

Hoặc \(k=\frac{1}{2}\)( thỏa mãn)

Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)

Vậy \(x=1;y=2;z=3\)

Ta có :

\(|x-y|+|y-z|+|z-x|=2019\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)

Nhận xét :

\(|a|+a=0\)với \(a\le0\)

\(|a|+a=2a\)với \(a\ge0\)

\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)

\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)

mà \(2019\)lẻ

\(\Rightarrow\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 3 2020

Lời giải:

$2^x+1=y^3$

$\Leftrightarrow 2^x=y^3-1=(y-1)(y^2+y+1)$

Do $x,y$ là các số tự nhiên nên $y^2+y+1, y-1$ cũng là các số tự nhiên. Tích của chúng là một lũy thừa cơ số 2 nên tồn tại $m,n\in\mathbb{N}(m< n)$ thỏa mãn:
\(\left\{\begin{matrix} y-1=2^m(1)\\ y^2+y+1=2^n\end{matrix}\right.(m+n=x)\)

\(\Rightarrow \left\{\begin{matrix} y^2-2y+1=2^{2m}\\ y^2+y+1=2^n\end{matrix}\right.\Rightarrow 3y=2^n-2^{2m}\). Từ $(1)$ cũng có $y=2^m+1$ nên:

$3(2^m+1)=2^n-2^{2m}$

$\Rightarrow 3=2^n-2^{2m}-3.2^m$

Dễ thấy nếu $m,n\geq 1$ thì vế phải chia hết cho $2$, trong khi vế trái bằng $3$ không chia hết cho $2$ (vô lý). Do đó trong 2 số $m,n$ tồn tại 1 số bằng $0$

Vì $m< n$ nên $m=0$. Khi đó: $3=2^n-4\Rightarrow 7=2^n$ (vô lý)

Vậy không tồn tại $m,n$,kéo theo không tồn tại $x,y$ thỏa mãn.

1 tháng 1 2018

a/

Theo đề,ta có:

+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)

+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)

Từ (1) và (2), ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)

Do đó:

+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)

+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)

+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)

Vậy: + \(x=-\dfrac{224}{19}\)

+ \(y=-\dfrac{336}{19}\)

+ \(z=-\dfrac{420}{19}\)

1 tháng 1 2018

a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)

\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)

=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng tính chất DTSBN có:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)

=> x=\(\dfrac{-224}{19}\)

y=\(\dfrac{-336}{19}\)

z=\(\dfrac{-420}{19}\)

28 tháng 12 2016

a) \(\frac{x}{1}=\frac{y}{3}=\frac{4z}{15}=\frac{6x+7y+8z}{1.6+3.7+15.2}=\frac{456}{57}=8\)

x=8

y=24

z=30

25 tháng 9 2018

\(3x=y\)=>  \(\frac{x}{1}=\frac{y}{3}\)

hay  \(\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\)=>  \(\frac{y}{4}=\frac{z}{5}\)

hay  \(\frac{y}{12}=\frac{z}{15}\)

suy ra:   \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

đến đây bạn ADTCDTSBN nhé

14 tháng 5 2017

Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)

\(\frac{z-3}{4}=\frac{3z-9}{12}\)

Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)

\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)

Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7