Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sai đề
b) \(25-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow5^2-y^2=8\left(x-2016\right)^2\)
\(\Leftrightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2=0\)
Mà \(8\left(x-2016\right)^2\ge0\Rightarrow5^2-y^2\ge8\left(x-2016\right)^2\ge0\)
\(\Rightarrow\left(5^2-y^2\right)-8\left(x-2016\right)^2\ge0\)
Do theo đề bài thì vế phải bằng 0 nên: \(\hept{\begin{cases}5^2-y^2=0\\8\left(x-2016\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=2016\end{cases}}\)
a, \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\) (2)
Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\) (vô lí)
\(\Rightarrow x\ne0;y\ne0;z\ne0\)
Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)
Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)
\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\) (3)
\(thay\) \(x=2k;y=4k;z=6k\)vào (3) ta được :
\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)
\(56k^2-28k=0\)
\(56k.\left(2k-1\right)=0\)
\(\Rightarrow k=0\)(loại)
Hoặc \(k=\frac{1}{2}\)( thỏa mãn)
Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)
Vậy \(x=1;y=2;z=3\)
Ta có :
\(|x-y|+|y-z|+|z-x|=2019\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)
Nhận xét :
\(|a|+a=0\)với \(a\le0\)
\(|a|+a=2a\)với \(a\ge0\)
\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)
mà \(2019\)lẻ
\(\Rightarrow\left(đpcm\right)\)
Lời giải:
$2^x+1=y^3$
$\Leftrightarrow 2^x=y^3-1=(y-1)(y^2+y+1)$
Do $x,y$ là các số tự nhiên nên $y^2+y+1, y-1$ cũng là các số tự nhiên. Tích của chúng là một lũy thừa cơ số 2 nên tồn tại $m,n\in\mathbb{N}(m< n)$ thỏa mãn:
\(\left\{\begin{matrix}
y-1=2^m(1)\\
y^2+y+1=2^n\end{matrix}\right.(m+n=x)\)
\(\Rightarrow \left\{\begin{matrix} y^2-2y+1=2^{2m}\\ y^2+y+1=2^n\end{matrix}\right.\Rightarrow 3y=2^n-2^{2m}\). Từ $(1)$ cũng có $y=2^m+1$ nên:
$3(2^m+1)=2^n-2^{2m}$
$\Rightarrow 3=2^n-2^{2m}-3.2^m$
Dễ thấy nếu $m,n\geq 1$ thì vế phải chia hết cho $2$, trong khi vế trái bằng $3$ không chia hết cho $2$ (vô lý). Do đó trong 2 số $m,n$ tồn tại 1 số bằng $0$
Vì $m< n$ nên $m=0$. Khi đó: $3=2^n-4\Rightarrow 7=2^n$ (vô lý)
Vậy không tồn tại $m,n$,kéo theo không tồn tại $x,y$ thỏa mãn.
a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)
a) \(\frac{x}{1}=\frac{y}{3}=\frac{4z}{15}=\frac{6x+7y+8z}{1.6+3.7+15.2}=\frac{456}{57}=8\)
x=8
y=24
z=30
\(3x=y\)=> \(\frac{x}{1}=\frac{y}{3}\)
hay \(\frac{x}{4}=\frac{y}{12}\)
\(5y=4z\)=> \(\frac{y}{4}=\frac{z}{5}\)
hay \(\frac{y}{12}=\frac{z}{15}\)
suy ra: \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
đến đây bạn ADTCDTSBN nhé
Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)
\(\frac{z-3}{4}=\frac{3z-9}{12}\)
Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7
Lời giải:
Ta có: $3^x.y^2=4z^2+8z+1=(2z+2)^2-3$
$\Rightarrow (2z+2)^2=3+3^x.y^2$
Xét các TH sau:
TH1: $x=0\Rightarrow (2z+2)^2=3+y^2$
$\Leftrightarrow (2z+2)^2-y^2=3$
$\Leftrightarrow (2z+2-y)(2z+2+y)=3$ (đây là dạng phương trình tích đơn giản với các thừa số nguyên)
TH2: $x=1\Rightarrow (2z+2)^2=3+3y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3y^2=(2z+2)^2\vdots 9\Rightarrow y^2+1\vdots 3$
Điều này hoàn toàn vô lý do ta có tính chất 1 số chính phương khi chia cho $3$ có dư là $0$ hoặc $1$. Do đó $y^2+1$ chia 3 có dư là $1$ hoặc $2$.
TH3: $x\geq 2\Rightarrow (2z+2)^2=3+3^x.y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3^x.y^2=(2z+2)^2\vdots 9$
Điều này vô lý do $3\not\vdots 9$ và $3^x.y^2\vdots 9$ với mọi $x\geq 2$
Vậy.........