Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
3x^2-y^2-2xy-2x-2y+40=0
<=>(x-y)(3x+y)-(3x+y)+(x-y)+40=0
Đặt x-y=a: 3x+y=b
PT<=>ab+a-b-1=-41
<=>(b+1)(a-1)=-41
Đến đây bạn tự giải nốt nha. cho xin phát :)
x2 + 2y2 + 2xy - 4x + 6y + 29 = 0
<=> ( x2 + 2xy + y2 - 4x - 4y + 4 ) + ( y2 + 10y + 25 ) = 0
<=> [ ( x2 + 2xy + y2 ) - 2( x + y ).2 + 22 ] + ( y + 5 )2 = 0
<=> ( x + y - 2 )2 + ( y + 5 )2 = 0 (*)
<=> \(\hept{\begin{cases}\left(x+y-2\right)^2\ge0\forall x,y\\\left(y+5\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+y-2\right)^2+\left(y+5\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
Vậy x = 7 ; y = -5
Ta có: x2+y2+2xy-4x-2y+1=0
⇔(x2+y2+2xy-2x-2y+1)-2x=0
⇔(x+y-1)2=2x
Mà (x+y-1)2 là số chính phương
⇒2x là số chính phương
⇒2x chia 4 dư 0 hoặc 1
Mà 2x là số chẵn
⇒2x chia hết cho 4
⇒x chia hết cho 2
⇒x là số chẵn(đpcm)
Lại có:(x+y-1)2=2x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\)=x
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{2}\). \(\dfrac{1}{2}\) =x:2
⇒\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2
⇒(\(\dfrac{x+y-1}{2}\))2=x:2
Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương
⇒x:2 là số chính phương (đpcm)
Bạn tham khảo:
Tìm nghiệm nguyên dương của phương trình x2+2y2+2xy-4x-3y-2=0 - Hoc24