K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

\(2n+6⋮2n-5\)

\(\Rightarrow\left(2n-5\right)+11⋮2n-5\)
\(\Rightarrow2n-5\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)

Đến đây bạn tự tìm nghiệm nhé.

18 tháng 2 2020

Ta có : 2n+6 chia hết cho 2n-5

=> 2n-5+11 chia hết cho 2n-5

Vì 2n-5 chia hết cho 2n-5 nên 11 chia hết cho 2n-5

=> 2n-5 thuộ Ư(11)={-11;-1;1;11}

+) 2n-5=-11 => 2n=-6 => n=-3  (thỏa mãn)

+) 2n-5=-1 => 2n=4 => n=2  (thỏa mãn)

+)  2n-5=1 => 2n=6 => n=3  (thỏa mãn)

+) 2n-5=11 => 2n=16 => n=8  (thỏa mãn)

Vậy n thuộc {-3;2;3;8}

24 tháng 11 2016

Ta có 2n + 5 = 2n -1 + 6

2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1

Mà 2n-1 chia hết 2n-1

=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1

=> 2n-1 thuôc Ư(6) = {1,2,3,6}

TH1: 2n-1 =1 => n=1

TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)

TH3: 2n-1 = 3 => n=2

TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)

Vậy n có 2 giá trị là 1 và 2

16 tháng 7 2017

Ta có 2n + 5 = 2n -1 + 6

2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1

Mà 2n-1 chia hết 2n-1

=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1

=> 2n-1 thuôc Ư(6) = {1,2,3,6}

TH1: 2n-1 =1 => n=1

TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)

TH3: 2n-1 = 3 => n=2

TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)

Vậy n có 2 giá trị là 1 và 2

22 tháng 4 2016

g/s 2n+7 chia hết cho n-2

Ta có 2n+7 cia hết n-2

        2-2 chia hết n-2 =>2(n-2) chia hết n-2=>2n-4 chia hết cho n-2

do đó 2n+7-(2n+4) chia hết n-2

     (=)2n+7-2n-4 chia hết n-2

      (=)3 chia hết n-2 => n-2 thuộc Ư(3).............

 bn tự lm tiếp nha đến đây chỉ vc lập bả ng gtrị tìm n

22 tháng 4 2016

ta có : 2n+7/n-2=2(n-2)+11/n-2=2(n-2)/n-2+11/n-2=2+11/n-2

Để 2n+7 chia hết cho n-2 thì 11/n-2 phải có giá trị nguyên

=>n-2 phải là ước của 11

=>n-2={-11;-1;1;11}

Ta có bảng

n-2-11-1111
n-91313

Vậy n={-9;1;3;13}


 

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

10 tháng 9 2019

\(3n+17⋮2n+3\)

\(\Leftrightarrow2.\left(3n+17\right)⋮2n+3\)

\(\Leftrightarrow6n+34⋮2n+3\)

\(\Leftrightarrow3.\left(2n+3\right)+25⋮2n+3\)

Mà \(3.\left(2n+3\right)⋮2n+3\)

\(\Rightarrow25⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

Làm nốt

17 tháng 6 2016

1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)

mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21

=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.

=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}

Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.

2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3

để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)

Khi đó n = -5 ; -3 ; -1 ; 1

3 tháng 2 2016

2n + 15 chia hết cho n + 3

=> 2n + 6 + 9 chia hết cho n + 3

=> 2(n + 3) + 9 chia hết cho n + 3

=> 9 chia hết cho n + 3 (Vì 2(n + 3) chia hết cho n + 3)

=> n + 3 thuộc {3; 9} (Vì n thuộc N => n + 3 > 3)

=> n thuộc {0; 6}

3 tháng 2 2016

Ta có:

\(\frac{2n+15}{n+3}=\frac{2n+6+9}{n+3}=\frac{2\left(n+3\right)+9}{n+3}=\frac{n+3}{n+3}+\frac{9}{n+3}=1+\frac{9}{n+3}\)

Suy ra n+3\(\in\)Ư(9)

Ư(9)là:[1,-1,3,-3,9,-9]

Ta có bảng sau:

n+31-13-39-9
n-2-40-66-12

Vậy n=-2;-4;0;-6;6;-12

18 tháng 12 2023

3n + 5 ⋮ 2n + 1

(3n + 5).2 ⋮ 2n + 1

6n + 10 ⋮ 2n + 1

 3.(2n + 1) + 7 ⋮ 2n + 1

   2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

Lập bảng ta có:

2n+1 -7 -1 1 7
n -4 -1 0

3

 

Theo bảng trên ta có 

\(\in\) {-4; -1; 0; 3}