K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30

                 (a+b+c)(a+b+c)=36

suy ra.  (a+b+c)=6 hoặc -6

+).  (a+b+c)=6

Suy ra.   a=-2

               b=3

                c=5

trường hợp trên loại vì ab=-6 >5

+).      (a+b+c)=-6

a=2

b=-3

c=-5


trường hợp trên loại vì ab=-6 >-5

20 tháng 8 2016

a) a.b= 3/5; b.c=4/5; a.c=3/4

b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30

c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c

hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng

18 tháng 3 2017

a) ab=3/5; bc=4/5; ca=3/4

=> (abc)2 = (3/4).(4/5).(3/4)=9/25

=>abc=3/5

Ta có: abc=3/5

         ab=3/5

=> c=1

Ta có: abc=3/5

          bc=4/5

=> a=3/4

Ta có: abc=3/5

          ca=3/4

=> b=4/5

Vậy a=3/4; b=4/5; c=1

4 tháng 1 2016

ab=c => a=c/b (1) 
bc=4a => a=(bc)/4 (2) 
Từ (1) và (2) => c/b = (bc)/4 
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 
(1) => a=c/2 <=> c=2a 
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= 2*3 = 6 (thỏa) 
_với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 
(1) => a=c/-2 <=> c=-2a 
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= -2*3 = -6 (thỏa) 
_với a=-3 thì c= -2*-3 =6 (thỏa) 
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

4 tháng 1 2016

ab=c => a=c/b (1) 
bc=4a => a=(bc)/4 (2) 
Từ (1) và (2) => c/b = (bc)/4 
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 
(1) => a=c/2 <=> c=2a 
ta có: ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= 2*3 = 6 (thỏa) 
_với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 
(1) => a=c/-2 <=> c=-2a 
ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 
_ với a=3 thì c= -2*3 = -6 (thỏa) 
_với a=-3 thì c= -2*-3 =6 (thỏa) 
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

15 tháng 11 2023

a, \(\dfrac{a}{b}\)  = \(\dfrac{3}{5}\) ⇒ a = \(\dfrac{3}{5}\)b;  \(\dfrac{b}{c}\) = \(\dfrac{4}{5}\) ⇒ c = b : \(\dfrac{4}{5}\) = \(\dfrac{5}{4}\)b

⇒ a.c =  \(\dfrac{3}{5}\)b. \(\dfrac{5}{4}\)b = \(\dfrac{3}{4}\) ⇒ b2.\(\dfrac{3}{4}\)  = \(\dfrac{3}{4}\) ⇒ b2 = 1 ⇒ \(\left[{}\begin{matrix}b=1\\b=-1\end{matrix}\right.\)

⇒ \(\left[{}\begin{matrix}a=\dfrac{3}{5}\\a=-\dfrac{3}{5}\end{matrix}\right.\)\(\left[{}\begin{matrix}c=\dfrac{5}{4}\\c=-\dfrac{5}{4}\end{matrix}\right.\)

Vậy các cặp số a;b;c thỏa mãn đề bài là:

(a; b; c) = (-\(\dfrac{3}{5}\); -1; - \(\dfrac{5}{4}\)) ; (\(\dfrac{3}{5}\); 1; \(\dfrac{5}{4}\))

 

 

 

15 tháng 11 2023

b, a.(a+b+c) = -12; b.(a+b+c) =18; c.(a+b+c) = 30

     ⇒a.(a+b+c) - b.(a+b+c) + c.(a+b+c) = -12 + 18 + 30

    ⇒ (a +b+c)(a-b+c) = 0

     ⇒ a - b + c = 0 ⇒ a + c  =b

Thay a + c  =  b vào biểu thức: b.(a+b+c) =18 ta có:

            b.(b + b) = 18

             2b.b = 18

              b2 = 18: 2

              b2 = 9 ⇒ \(\left[{}\begin{matrix}b=-3\\b=3\end{matrix}\right.\)

Thay a + c = b vào biểu thức c.(a + b + c) = 30 ta có:

        c.(b+b) = 30 ⇒ 2bc = 30 ⇒ bc = 30: 2 = 15 ⇒ c = \(\dfrac{15}{b}\)

Thay a + c = b vào biểu thức a.(a+b+c) = -12 ta có:

     a.(b + b) = -12 ⇒2ab = -12 ⇒ ab = -12 : 2 = - 6 ⇒ a = - \(\dfrac{6}{b}\)

Lập bảng ta có: 

b -3 3
a = \(-\dfrac{6}{b}\) 2 -2
c = \(\dfrac{15}{b}\) -5 5

Vậy các cặp số a; b; c thỏa mãn đề bài là:

(a; b; c) = (2; -3; -5); (-2; 3; 5)

 

 

 

     

28 tháng 7 2017

a) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ca=\dfrac{3}{4}\)

\(\Leftrightarrow ab.bc.ca=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}\)

\(\Leftrightarrow a^2.b^2.c^2=\dfrac{9}{25}\)

\(\Leftrightarrow\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2=\left(-\dfrac{3}{5}\right)^2\)

+ Khi \(\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2\Leftrightarrow abc=\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\)

+ Khi \(\left(abc\right)^2=\left(-\dfrac{3}{5}\right)^2\Leftrightarrow abc=-\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\left(-\dfrac{3}{5}\right):\dfrac{4}{5}=-\dfrac{3}{4}\\b=\left(-\dfrac{3}{5}\right):\dfrac{3}{4}=-\dfrac{4}{5}\\c=\left(-\dfrac{3}{5}\right):\dfrac{3}{5}=-1\end{matrix}\right.\)

b) \(a\left(a+b+c\right)=-12;b\left(a+b+c\right)=18;c\left(a+b+c\right)=30\)

\(\Leftrightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(-12\right)+18+30\)

\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)

+ Khi \(\left(a+b+c\right)^2=6^2\Leftrightarrow a+b+c=6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):6=-2\\b=18:6=3\\c=30:6=5\end{matrix}\right.\)

+ Khi \(\left(a+b+c\right)^2=\left(-6\right)^2\Leftrightarrow a+b+c=-6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):\left(-6\right)=2\\b=18:\left(-6\right)=-3\\c=30:\left(-6\right)=-5\end{matrix}\right.\)

c) \(ab=c;bc=4a;ac=9b\)

Kiểm tra lại đề bài xem có thiếu điều kiện không.

28 tháng 7 2017

Cứ theo khẳng định của Nguyễn Thị Ngọc Linh thì đề c) không thiếu gì. Xin giải tiếp.

c) \(ab=c;bc=4a;ac=9b\)

\(\Leftrightarrow ab.bc.ac=c.4a.9b\)

\(\Leftrightarrow\left(abc\right)\left(abc\right)=36\left(abc\right)\)

\(\Leftrightarrow abc=36\)

+ Vì \(ab=c\Leftrightarrow cc=36\Leftrightarrow c^2=6^2=\left(-6\right)^2\)

+ Vì \(bc=4a\Leftrightarrow a.4a=36\Leftrightarrow4a^2=36\Leftrightarrow a^2=9=3^2=\left(-3\right)^2\)

+ Vì \(ac=9b\Leftrightarrow b.9b=36\Leftrightarrow9b^2=36\Leftrightarrow b^2=4=2^2=\left(-2\right)^2\)

Vậy \(\left\{{}\begin{matrix}a_1=3;a_2=-3\\b_1=2;b_2=-2\\c_1=6;c_2=-6\end{matrix}\right.\)