Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(a,b,c\ne0\)
\(\dfrac{b+c+1}{a}=\dfrac{a+c+1}{b}=\dfrac{a+b+1}{c}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\dfrac{b+c+1}{a}+1=\dfrac{a+c+1}{b}+1=\dfrac{a+b+1}{c}+1=\dfrac{1}{a+b+c}+1\)
\(\Leftrightarrow\dfrac{a+b+c+1}{a}=\dfrac{a+b+c+1}{b}=\dfrac{a+b+c+1}{c}=\dfrac{a+b+c+1}{a+b+c}\)Do các tử số bằng nhau nên các mẫu số cũng phải bằng nhau hay: \(a=b=c=a+b+c\Leftrightarrow a=b=c=0\) (ktmđk)
Do vậy không có số a,b,c nào thỏa mãn đề bài. => Sai đề
bài này dễ mà
ta có a(a+b+c)+b(a+b+c)+c(a+b+c)=\(\frac{-1}{24}\)+\(\frac{1}{16}\)+\(\frac{-1}{72}\)=\(\frac{1}{144}\)
hay (a+b+c)2=\(\frac{1}{144}\)
=> a+b+c=\(\frac{1}{12}\)
rồi từ dó tự làm dc rồi nha
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)mà a + b + c = 2019
\(\Rightarrow a=b=c=\frac{2019}{3}=673\)