Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+...+\frac{10}{48.53}\)
\(=\frac{10}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{48}-\frac{1}{53}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{53}\right)\)
\(=2.\frac{50}{159}=\frac{100}{159}\)
-5/9+8/15+-2/11+-4/9/7/17
(-5/9+-4/9)+(8/15+7/15+-2/11
-1+1+-2/11
-2/11
(17/5+11/4)-22/5
123/20-22/5
123/20-88/20
35/20
\(A=\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}\)
\(A=2\left(\frac{5}{3.8}+\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+\frac{5}{23.28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2.\frac{25}{84}=\frac{25}{42}\)
\(A=\frac{10}{3\cdot8}+\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+\frac{10}{23\cdot28}\)
\(A=10\left(\frac{1}{3\cdot8}+\frac{1}{8\cdot13}+\frac{1}{13\cdot18}+\frac{1}{18\cdot23}+\frac{1}{23\cdot28}\right)\)
\(A=\frac{10}{5}\left(\frac{5}{3\cdot8}+\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+\frac{5}{23\cdot28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2\cdot\frac{25}{84}\)
\(A=\frac{25}{42}\)
Bg
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)
\(=\frac{1^2}{101}\)
\(=\frac{1}{101}\)
Ghi chú: \(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)--> 22 chịt tiêu 2.2 (trên và dưới) làm thế này mãi đến khi còn \(\frac{1^2}{101}\).
b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)
=\(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)
= \(\frac{2}{1}.\frac{59}{60}\)
= \(\frac{59}{30}\)
Ghi chú: \(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)--> chịt tiêu liên tục, còn \(\frac{2}{1}.\frac{59}{60}\).
Ta có : A=\(\frac{2}{3.8}+\frac{2}{8.13}+...+\frac{2}{48.53}\)
= \(2.\left(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{48.53}\right)\)
= \(\frac{2}{5}.\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{48.53}\right)\)
=\(\frac{2}{5}.\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{48}-\frac{1}{53}\right)\)
=\(\frac{2}{5}\left(\frac{1}{3}-\frac{1}{53}\right)\)
=\(\frac{2}{5}.\frac{50}{159}\)
=\(\frac{20}{159}\)
Vậy A=\(\frac{20}{159}\)
\(A=\frac{2}{3.8}+\frac{2}{8.13}+...+\frac{2}{48.53}\)
\(=\frac{2}{5}\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{48.53}\right)\)
\(=\frac{2}{5}\left(\frac{8-3}{3.8}+\frac{13-8}{8.13}+...+\frac{53-48}{48.53}\right)\)
\(=\frac{2}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{48}-\frac{1}{53}\right)\)
\(=\frac{2}{5}\left(\frac{1}{3}-\frac{1}{53}\right)\)
\(=\frac{20}{159}\)