Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{10}{3\cdot8}+\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+\frac{10}{23\cdot28}\)
\(B=2\left[\frac{5}{3\cdot8}+\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+\frac{5}{23\cdot28}\right]\)
\(B=2\left[\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right]\)
\(B=2\left[\frac{1}{3}-\frac{1}{28}\right]=\frac{25}{42}\)
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+...+\frac{10}{48.53}\)
\(=\frac{10}{5}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{48}-\frac{1}{53}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{53}\right)\)
\(=2.\frac{50}{159}=\frac{100}{159}\)
Nếu ai có giải dùm mình thì giải từng phần nhưng đừng chỉ ghi kết quả nhé~
a,\(\frac{2004}{10045}\)
b,\(\frac{25}{609}\)
c,\(\frac{1000}{3549}\)
d,\(\frac{25}{258}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.24}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\cdot\frac{125}{1032}\)
\(=\frac{25}{258}\)
\(\frac{4}{8.13}+\frac{4}{13.18}+\frac{4}{18.23}+...+\frac{4}{253.258}\)
\(=\frac{4}{5}\left(\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+...+\frac{5}{253.258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+...+\frac{1}{253}-\frac{1}{258}\right)\)
\(=\frac{4}{5}\left(\frac{1}{8}-\frac{1}{258}\right)\)
\(=\frac{4}{5}.\frac{125}{1032}=\frac{25}{258}\)
\(=5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right).\frac{392}{17}\)
\(=5^2\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\frac{392}{17}\)
\(=25\left(\frac{1}{8}-\frac{1}{98}\right)\frac{392}{17}\)
\(=25\times\frac{45}{392}\times\frac{392}{17}\)
\(=25\times\frac{45}{17}\)
\(=\frac{1125}{17}\)
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
\(A=\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}\)
\(A=2\left(\frac{5}{3.8}+\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+\frac{5}{23.28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2.\frac{25}{84}=\frac{25}{42}\)
\(A=\frac{10}{3\cdot8}+\frac{10}{8\cdot13}+\frac{10}{13\cdot18}+\frac{10}{18\cdot23}+\frac{10}{23\cdot28}\)
\(A=10\left(\frac{1}{3\cdot8}+\frac{1}{8\cdot13}+\frac{1}{13\cdot18}+\frac{1}{18\cdot23}+\frac{1}{23\cdot28}\right)\)
\(A=\frac{10}{5}\left(\frac{5}{3\cdot8}+\frac{5}{8\cdot13}+\frac{5}{13\cdot18}+\frac{5}{18\cdot23}+\frac{5}{23\cdot28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+\frac{1}{18}-\frac{1}{23}+\frac{1}{23}-\frac{1}{28}\right)\)
\(A=2\cdot\left(\frac{1}{3}-\frac{1}{28}\right)\)
\(A=2\cdot\frac{25}{84}\)
\(A=\frac{25}{42}\)