K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

\(=5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right).\frac{392}{17}\)

\(=5^2\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\frac{392}{17}\)

\(=25\left(\frac{1}{8}-\frac{1}{98}\right)\frac{392}{17}\)

\(=25\times\frac{45}{392}\times\frac{392}{17}\)

\(=25\times\frac{45}{17}\)

\(=\frac{1125}{17}\)

28 tháng 4 2016

\(5^2.\left(\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+...+\frac{5}{93.98}\right).\frac{392}{5^2}\)

\(\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right).392=\left(\frac{1}{8}-\frac{1}{98}\right).392=45\)

8 tháng 2 2019

Có:

\(\frac{5^3}{8.13}+\frac{5^3}{13.18}+...+\frac{5^3}{93.98}\)

\(5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right)\)

=\(25\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\)

=\(25\left(\frac{1}{8}-\frac{1}{98}\right)\)

=\(\frac{1125}{392}\)

=> \(\frac{1125}{392}.3\frac{17}{125}\)

= ...

8 tháng 2 2019

cảm ơn bạn nhá!

25 tháng 8 2019

\(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)

\(=\frac{11}{125}-\left(\frac{17}{18}-\frac{8}{18}\right)+\left(\frac{17}{14}-\frac{10}{14}\right)\)

\(=\frac{11}{125}-\frac{1}{2}+\frac{1}{2}\)

\(=\frac{11}{125}+\left(\frac{1}{2}-\frac{1}{2}\right)\)\(\frac{11}{125}\)

b) \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)

\(=\left(6-5-3\right)+\left(\frac{7}{3}-\frac{5}{3}-\frac{2}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)

\(=-2+0+\frac{-1}{2}\)

\(-2-\frac{-1}{2}=-\left(2+\frac{1}{2}\right)=-2\frac{1}{2}\)

25 tháng 8 2019

ấy chỗ b) thiếu bước đầu mở ngoặc r mới nhóm nhé :))

31 tháng 3 2016

Từng bài thôi

15 tháng 3 2016

\(\left(-1\frac{1}{6}\right)\left(\frac{1-\frac{3}{5}+\frac{3}{11}-\frac{3}{13}}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right)\left(\frac{4-\frac{4}{17}+\frac{4}{19}-\frac{4}{2013}}{5-\frac{5}{7}+\frac{5}{19}-\frac{5}{2013}}\right)\)

\(=-\frac{7}{6}.\left(\frac{3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}\right)}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right):\left(\frac{4.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}{5.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}\right)\)

\(=-\frac{7}{6}.3:\frac{4}{5}=-\frac{7}{2}.\frac{5}{4}=-\frac{35}{8}\)

9 tháng 8 2017

a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)

\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)

b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0

9 tháng 8 2017

a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)

\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)

\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)

\(=\frac{2}{3}+\frac{1}{11}\)

\(=\frac{25}{33}\)

b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)

Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.

16 tháng 3 2017

\(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\) _  \(\frac{3-\frac{3}{11}-\frac{3}{17}}{5-\frac{5}{11}-\frac{5}{17}}\)

=\(\frac{2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)\(\frac{3\left(1-\frac{1}{11}-\frac{1}{17}\right)}{5\left(1-\frac{1}{11}-\frac{1}{17}\right)}\)\(\frac{2}{4}-\frac{3}{5}\)\(\frac{-1}{10}\)