Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co AC = 5 (đ/lý tam giác vuông có 1 góc = 30 đô
dể dàng tính dk AB = \(\sqrt{75}\)
=) BC = 6
đề câu a phải là ADC là tgiac đều chứ ???
a) Ta có: góc DAC = BAC - BAD = 90 - 30 = 60 độ
Xét tgiac ADC có góc DAC = C = 60 độ => tgiac ADC đều (đpcm)
b) Tgiac ADC đều (cmt) => AD = AC (1)
Xét tgiac ABD có góc BAD = B = 30 độ
=> Tgiac ABD cân tại D => BD = AD (2)
(1), (2) => AC = BD
Lại có AC = CD (tgiac ADC đều)
=> AC = BD = DC
=> AC = 1/2 BC (đpcm)
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà ˆC=ˆA−ˆB=90o−30o=60o
Nên ˆADC=ˆC=60o
Do đó ΔADCΔADC là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: ΔADCΔADC là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của ΔABCΔABC trên AC nên
BD=CD=12BC
a, tam giác ABC vuông tại A (gT)
=> góc ABC + góc ACB = 90 (Đl)
có góc ABC - góc ACB = 30(gt)
=> góc ABC = (90 + 30) : 2 = 60
=> góc ACB = 60 - 30 = 30
b, xét tam giác ABE và tam giác DBE có : BE chung
AB = BD (gt)
góc ABE = góc DBE do BE là phân giác của góc ABC (gt)
=> tam giác ABE = tam giác DBE (c-g-c)
c, tam giác ABE = tam giác DBE (câu b)
=> góc BAE = góc EDB (đn)
có góc BAE = 90
=> góc EDB = 90
=> DE _|_ BC
d, DE _|_ BC (câu c)
=> tam giác EDC vuông tại D (đn)
=> góc CED + góc ECD = 90
góc ECD = 30 (câu a)
=> góc CED = 60 mà góc ABC = 60
=> góc CED = góc ABC
A B C 30 10 D 15