K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

a, tam giác ABC vuông tại A (gT)

=> góc ABC + góc ACB = 90 (Đl)

có góc ABC - góc ACB = 30(gt)

=> góc ABC = (90 + 30) : 2 = 60

=> góc ACB = 60 - 30 = 30 

b, xét tam giác ABE và tam giác DBE có : BE chung

AB = BD (gt)

góc ABE = góc DBE do BE là phân giác của góc ABC (gt)

=> tam giác ABE = tam giác DBE (c-g-c)

c, tam giác ABE = tam giác DBE  (câu b)

=> góc BAE = góc EDB (đn)

có góc BAE = 90

=> góc EDB = 90

=> DE _|_ BC 

d, DE _|_ BC  (câu c)

=> tam giác EDC vuông tại D (đn)

=> góc CED + góc ECD = 90

góc ECD = 30 (câu a)

=> góc CED = 60 mà góc ABC = 60

=> góc CED = góc ABC

20 tháng 11 2016

I don't know

Xét trong tam giác vuông ABC ta có:

Góc ACB=300

=> ABC=180-90-30=600

Vì góc ACB<ABC(30>60)

=> AB<AC(tính chất cạnh và góc đối diện)

b/Xét tam giác ABE và tam giác DBE có:

BE chung

BAE=BDE=900

ABE=DBE(Phân giác BE của góc ABC)

=> Tam giác ABE= tam giác DBE(ch-gn)

c/ Ta có BE là đường phân giác góc ABC

=> ABE=DBE=60/2=300

=> DBE=ECD=300

=> Tam giác ECB cân tại E

Vì EC là cạnh huyền của tam giác EDC vuông tại D

Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE

=> BE>AB

=> EC>AB(đpcm)

23 tháng 12 2016

a) ta có: A + ABC + C =180° (đ/l)

=> 90° + ABC + 40° =180°

=> ABC = 180° -( 40°+ 90°)

=> ABC = 50°

Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°

Vậy ABD = 25°

b) xét tam giác BAD và tam giác BED có:

AB = BE ( GT )

BD chung

ABD = CBD ( GT )

=> tam giác BAD = tam giác BED ( c.g.c )

Ta có A = BED = 90° ( 2 góc t.ư)

=> DE vuông góc BC ( vì có 1 góc= 90° )

c) xét tam giác ABC và tam giác EBF có:

AB = BE ( GT )

B chung

A = E = 90°

=> tam giác ABC = tam giác EBF ( g.c.g )

d) ta có tam giác ABC = tam giác EBF ( theo c )

=> BC = BF ( 2 cạnh tương ứng)

Xét tam giác BKC và tam giác BKF có:

BC = BF ( GT )

BK chung

FBK = KBC ( GT )

=> tam giác BKC = tam giác BKF (c.g.c)

=> BKC = BKF ( 2 góc t.ư)

=> BKC + BKF = 180° ( 2 góc kề bù )

=> BKC = BKF = 180° : 2 = 90° = KFC

Vậy 3 điểm K,F,C thẳng hàng

Bn vẽ hình hộ mk nhé!

 

 

 

 

21 tháng 12 2016

A B C D 40

a) Áp dụng tc tổng 3 góc của 1 tg ta có:

góc BAC + ACB + ABC = 180 độ

=>90 + 40 + ABC = 180

=> ABC = 50 độ

mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )

 

12 tháng 6 2018

Bạn tự vẽ hình nha ^^

a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có 

\(AB=EB\left(GT\right)\)(1)

\(\widehat{BAD}=\widehat{BED}=90^o\)(2)

\(BD:\)Cạnh chung (3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )

b) 

---Theo đề bài ta có :

\(AB=EB\left(GT\right)\)(1)

và  \(\widehat{ABC}=60^o\left(gt\right)\)(2)

Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều                   (đpcm)

--- Vì  \(\Delta ABE\)đều

\(\Rightarrow AB=BE=AE\)

Mà \(AB=6cm\)(gt)

...\(AE=EC\)

\(\Rightarrow EC=6cm\)

mà \(BE=6cm\)

Có  \(EC+BE=BC\)

\(\Rightarrow6+6=12cm\)

Vậy BC =12cm

1 tháng 3 2021

thank b

undefined

5 tháng 2 2017

cần vẽ hình 0 bạn

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??