Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)
\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(=\frac{1}{1.2}-\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Rightarrow k=2\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)
Tính tổng dãy dấu ngoặc trước
Đặt \(S=1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot(4-1)+...+98\cdot99\cdot(100-97)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot3\cdot4+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3S=98\cdot99\cdot100\Rightarrow S=\frac{1}{3}\cdot98\cdot99\cdot100\)
Thay vào đề bài,ta có :
\(\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}:\frac{-3}{2}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{90}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-30}{7}\cdot\frac{2}{-1}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-60}{-7}=\frac{60}{7}\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=\frac{60}{7}\cdot26950\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=231000\)
\(\Leftrightarrow323400\cdot x=231000\)
\(\Leftrightarrow x=231000:323400=\frac{5}{7}\)
Tử thần sai từ dòng:
\(\frac{\frac{1}{3}.98.99.100.x}{26950}=\frac{30}{7}.\frac{2}{-1}\Leftrightarrow12x=-\frac{60}{7}\Leftrightarrow x=\frac{-5}{7}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}\)
\(A=\left(\frac{2.3....99}{1.2....98}\right).\left(\frac{2.3....99}{3.4....100}\right)\)
\(A=\frac{99}{1}.\frac{2}{100}\)
\(A=\frac{198}{100}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{14.15.16}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{14.15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{14.15}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{240}\right)\)
\(=\frac{1}{2}.\frac{119}{240}\)
\(=\frac{119}{480}\)
Bài làm:
Ta có:\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{14.15.16}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{14.15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{14.15}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{15.16}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{240}\right)\)
\(=\frac{1}{2}.\frac{119}{240}=\frac{119}{480}\)
\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}\)
\(x=\frac{23}{11}\)
2y= 2/ 1.2.3 + 2/2.3.4 + 2/3.4.5 +.... +2/998.999.1000
2y=1/1.2 - 1/2.3 +1/2.3 - 1/3.4 + 1/3.4 -1/4.5 +....+ 1/998.999 - 1/ 999.1000
2y=1/2 - 1/ 999.1000
2y = 499500-1 / 999.1000
2y=499499 / 999.1000
y=499499 / 1998000
Ủng hộ mk nha
Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)
2) Tương tự: \(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{2}-\frac{1}{50}=\frac{24}{50}\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)
ảnh đại diện đẹp thế lấy ở đâu