Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)
\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)
Tính tổng dãy dấu ngoặc trước
Đặt \(S=1\cdot2+2\cdot3+3\cdot4+...+98\cdot99\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot(4-1)+...+98\cdot99\cdot(100-97)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot3\cdot4+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3S=98\cdot99\cdot100\Rightarrow S=\frac{1}{3}\cdot98\cdot99\cdot100\)
Thay vào đề bài,ta có :
\(\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}:\frac{-3}{2}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=12\frac{6}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{90}{7}\cdot\frac{2}{-3}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-30}{7}\cdot\frac{2}{-1}\)
\(\Leftrightarrow\frac{\frac{1}{3}\cdot98\cdot99\cdot100\cdot x}{26950}=\frac{-60}{-7}=\frac{60}{7}\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=\frac{60}{7}\cdot26950\)
\(\Leftrightarrow\frac{1}{3}\cdot98\cdot99\cdot100\cdot x=231000\)
\(\Leftrightarrow323400\cdot x=231000\)
\(\Leftrightarrow x=231000:323400=\frac{5}{7}\)
Tử thần sai từ dòng:
\(\frac{\frac{1}{3}.98.99.100.x}{26950}=\frac{30}{7}.\frac{2}{-1}\Leftrightarrow12x=-\frac{60}{7}\Leftrightarrow x=\frac{-5}{7}\)
Phân tích phân số \(\dfrac{30}{43}\) ta có:
\(\dfrac{30}{43}=\dfrac{1}{\dfrac{43}{30}}=\dfrac{1}{1+\dfrac{13}{30}}=\dfrac{1}{1+\dfrac{1}{\dfrac{30}{13}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{4}{13}}}\)
\(=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{13}{4}}}}=\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{3+\dfrac{1}{4}}}}=\dfrac{1}{a+\dfrac{1}{b+\dfrac{1}{c+\dfrac{1}{d}}}}\)
Vậy: \(\left\{{}\begin{matrix}a=1\\b=2\\c=3\\d=4\end{matrix}\right.\)
(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11
(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11
(1 - 1/10) × x < 1 - 1/11
9/10 × x < 10/11
x < 10/11 : 9/10
x < 10/11 × 10/9
x < 100/99
Mà x là số tự nhiên => x = 0 hoặc 1
đụ cha mi
mi trù ta thi rớt HK II mà ta giúp mày hả
mấy bài này cũng dễ ẹt nữa
đừng có mơ ta sẽ giúp mày
ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha ha
\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99\cdot101}\right)\)
\(B=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)
\(B=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)
\(B=\frac{\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot\cdot\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot101\right)}\)
\(B=\frac{100\cdot2}{1\cdot101}\)
\(B=\frac{200}{101}\)
c) \(\frac{\left(3\cdot4\cdot2^{16}\right)}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{\left(3\cdot2^2\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot2^{22}-2^{36}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{11\cdot2^{35}-2^{26}}\)
\(=\frac{9\cdot2^4\cdot2^{32}2^{ }}{\left(11-2\right)\cdot2^{35}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{9\cdot2^{35}}\)
\(=\frac{9\cdot1\cdot2^{32}}{9\cdot2^{31}}=\frac{2^{32}}{2^{31}}=2\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}\)
\(x=\frac{23}{11}\)
Gọi A=(1/1.2.3+ 1/2.3.4 +...+ 1/8.9.10) .x=23/45
2A=3-1/1.2.3+ 4–2/2.3.4+ 5–4/3.4.5+ ... + 10–8/8.9.10
2A=1/2 —1/2.3+ 1/2.3 — 1/3.4+ 1/3.4– 1/4.5 +...+1/8.9–1/9.10=1/2–1/9.10=44/90
A=44/90 : 2=22/90
x=23/45:A= 23/45 : 22/90=23/11= 2 1/1( hỗn số)