Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(x>0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)
\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)
Thay x = 4 => \(\sqrt{x}=2\)vào P ta được :
\(\frac{1-4}{2}=-\frac{3}{2}\)
c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)
\(\Rightarrow-x< -1\Leftrightarrow x>1\)
ĐK: \(x\ne25,x\ge0\).
\(T=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{5}{\sqrt{x}+5}-\frac{10\sqrt{x}}{x-25}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-5\left(\sqrt{x}-5\right)-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{x+5\sqrt{x}-5\sqrt{x}+25-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)
\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)
\(T\)nguyên mà \(x\)nguyên nên \(\sqrt{x}+5\inƯ\left(10\right)\)mà \(\sqrt{x}+5\ge5\)nên \(\orbr{\begin{cases}\sqrt{x}+5=5\\\sqrt{x}+5=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=25\left(l\right)\end{cases}}\).
\(P=\frac{1}{x^2-\sqrt{x}}:\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\)\(=\frac{1}{\sqrt{x}\left(\sqrt{x^3}-1^3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
\(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)\(\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{1}{x-1}\)
2) De 3P=1+x
=> \(3\left(\frac{1}{x-1}\right)=x+1\)<=>\(\frac{3}{x-1}=x+1\)<=>\(\left(x+1\right)\left(x-1\right)=3\)
<=> \(x^2-1=3\)<=> \(x^2=4\)<=> \(x=2\)hoac \(x=-2\)
Vay voi x =2 va x=-2 ta co 3P=x+1