Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt :\(x^3+x-7=\left(\sqrt{x^2+5}\right)\Leftrightarrow x^3+x-10=\left(\sqrt{x^2+5}\right)-3\)
\(\left(x-2\right)\left(x^2+2x+5\right)=\frac{x^2+5-9}{\left(\sqrt{x^2+5}+3\right)}\Leftrightarrow\left(x-2\right)\left(x^2+2x+5-\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}\right)=0\)
Thành hai th: x=2 hoặc \(x^2+2x+5-\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}=0\Leftrightarrow x^2+2x+5=\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}\)
Điều kiện xác định của hệ: \(x\ge0,y\ge5.\)
Kí hiệu \(VT,VP\) tương ứng là vế trái và phải của phương trình thứ nhất.
Nếu \(x>y-5\to x+4>y-1,x+2>y-3\to VT>VP.\)
Nếu \(x<\)\(y-5\) thì tương tự \(VT<\)\(VP.\)
Vậy \(x=y-5.\)
Thay vào phương trình thứ hai cho ta
\(\left(y-5\right)^2+y^2+\left(y-5\right)+y=44\Leftrightarrow2y^2-8y-24=0\to y^2-4y-12=0\to\)
\(\to\left(y-6\right)\left(y+2\right)=0\to y=-2,6.\) Vì \(y\ge5\to y=6\to x=1.\)
Vậy nghiệm của hệ là \(\left(x,y\right)=\left(1,6\right).\)
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
\(x^2+6x+9=\left(\sqrt{2x+3}+1\right)^2\)
\(\left(x+3\right)^2=nhưcáitrên\)
\(x+3=\sqrt{2x+3}+1\)
\(x+2=\sqrt{2x+3}\)
\(x^2+4x+4=2x+3\)
Đk : ...
dễ thấy x = 0 không là nghiệm của pt
chia cả hai vế của pt cho \(\sqrt{x}\) ta có :
\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)
<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\)
Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\)
pt <=> \(t+\sqrt{t^2-6}=3\)
giải tiếp nha
\(\text{ĐKXĐ: }2x+3\ge0\Leftrightarrow x\ge\frac{-3}{2}\)
\(\sqrt{2x+3}+x=x^2-3\)
\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}-x-\frac{1}{4}=x^2\)
\(\Leftrightarrow2x+3+\sqrt{2x+3}+\frac{1}{4}=x^2+x+\frac{1}{4}\)
\(\Leftrightarrow\left(\sqrt{2x+3}+\frac{1}{2}\right)=\left(x+\frac{1}{2}\right)^2\)
\(\Leftrightarrow\sqrt{2x+3}+\frac{1}{2}=x+\frac{1}{2}\)
\(\Leftrightarrow\sqrt{2x+3}=x\)
\(\Leftrightarrow2x+3=x^2\)
tui nghĩ tới đây là you giải dc