Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bình phương rồi phân tích là ra
b, nhân chéo rồi phá ngoặc
\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-5\sqrt{x+3}=0\)
ĐK: \(x+3\ge0\Leftrightarrow x\ge-3\) và \(x-3\ge0\Leftrightarrow x\ge3\) suy ra điều kiện là X >=3
PT \(\Leftrightarrow\sqrt{\left(x+3\right)}\left(\sqrt{x+3}-5\right)=0\Leftrightarrow\sqrt{x+3}=0hoặc\left(\sqrt{x+3}-5\right)=0\)
+) \(\sqrt{x+3}=0\Leftrightarrow x=-3loai\)
+) \(\sqrt{x-3}-5=0\Leftrightarrow\sqrt{x-3}=5\Leftrightarrow x-3=25\Leftrightarrow x=28\)
Vậy x = 28
\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)Điều kiện x>=0
\(\Leftrightarrow x+\sqrt{x}-6=x-1\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
Vậy x = 25
ĐKXĐ:x khác 0
Trục căn thức ở mẫu ta được:
\(\left(\sqrt{x+3}-\sqrt{x+2}\right)+\left(\sqrt{x+2}-\sqrt{x+1}\right)+\left(\sqrt{x+1}-\sqrt{x}\right)=1.\)
<=> \(\sqrt{x+3}=\sqrt{x}+1\)
<=> \(x+3=x+2\sqrt{x}+1\)
=> 2\(\sqrt{x}=2\)
=> x=1
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\left(DKXD:x\ge0\right)\)
\(\Rightarrow\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(x+3\right)-\left(x+2\right)}+\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(x+2\right)-\left(x+1\right)}+\frac{\sqrt{x+1}-\sqrt{x}}{\left(x+1\right)-x}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\Leftrightarrow x+3=\left(1+\sqrt{x}\right)^2\Leftrightarrow x+3=x+1+2\sqrt{x}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TMDK\right)\)
Vậy tập nghiệm của phương trình : \(S=\left\{1\right\}\)
\(x^2+2x\sqrt{x-\frac{1}{x}}+3x+1=0\)
ĐK: \(x-\frac{1}{x}\ge0\)
\(+x=0\text{ thì }pt\text{ thành }0=1\text{ (vô lí)}\)
\(+\text{Xét }x\ne0;\text{ }pt\Leftrightarrow x+2\sqrt{x-\frac{1}{x}}=3+\frac{1}{x}\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)+2\sqrt{x-\frac{1}{x}}-3=0\)
Đặt \(\sqrt{x-\frac{1}{x}}=t\ge0;\text{ }pt\text{ thành }t^2+2t-3=0\)
\(c\text{) }x^2+\sqrt[3]{x^4-x^2}=2x+1\)
\(\Leftrightarrow\left(x^2-1\right)-2x+\sqrt[3]{x^2\left(x^2-1\right)}=0\)
Đặt \(\sqrt[3]{x^2-1}=a;\text{ }\sqrt[3]{x}=b\)
\(pt\text{ trở thành }a^3-2b^3+ab^2=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+2b^2\right)=0\)
\(\Leftrightarrow a=b\text{ hoặc }\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\)
\(a=b\text{ thì }\sqrt[3]{x^2-1}=\sqrt[3]{x}\Leftrightarrow x^2-1=x\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)
\(\left(a+\frac{b}{2}\right)^2+\frac{7b^2}{4}=0\Leftrightarrow b=0\text{ và }a+\frac{b}{2}=0\Leftrightarrow a=b=0\)
Suy ra \(\sqrt[3]{x^2-1}=0\text{ và }\sqrt[3]{x}=0\Leftrightarrow x=0\text{ và }x^2-1=0\text{ (vô nghiệm)}\)
1. ĐIỀU KIỆN XÁC ĐỊNH \(x\ge\frac{1}{2}.\)
Phương trình tương đương với \(\sqrt{4x^2-1}-\sqrt{2x+1}=\sqrt{2x^2-x}-\sqrt{x}\Leftrightarrow\frac{2\left(2x^2-x-1\right)}{\sqrt{4x^2-1}+\sqrt{2x+1}}=\frac{2x\left(x-1\right)}{\sqrt{2x^2-x}+\sqrt{x}}\)
Ta có \(x=1\) là nghiệm. Xét \(x\ne1:\) Phương trình tương đương với \(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\).
Vì \(x\ge\frac{1}{2}\to\sqrt{4x^2-1}+\sqrt{x+1}\le2\sqrt{2x^2-x}+2\sqrt{x},2\left(2x+1\right)>2\times2x\to\)
\(\frac{2\left(2x+1\right)}{\sqrt{4x^2-1}+\sqrt{x+1}}>\frac{2\times2x}{2\left(\sqrt{2x^2-x}+\sqrt{x}\right)}=\frac{2x}{\sqrt{2x^2-x}+\sqrt{x}}\to\) phưong trình vô nghiệm.
Vậy phương trình đã cho có nghiệm duy nhất \(x=1\).
2. Điều kiện \(2-x^2>0,x\ne0\Leftrightarrow x\ne0,-\sqrt{2}\)\(<\)\(x<\sqrt{2}\) Đặt \(y=\sqrt{2-x^2}\) thì ta có \(x^2+y^2=2,\frac{1}{x}+\frac{1}{y}=2\to x+y=2xy\to x+y+2=\left(x+y\right)^2\to x+y=-1,2\)
Với \(x+y=-1\to xy=-\frac{1}{2}\to x\sqrt{2-x^2}=-\frac{1}{2}\to x^2\left(2-x^2\right)=\frac{1}{4},x<0\to\left(x^2-1\right)^2=\frac{3}{4}\)
\(x^2=1\pm\frac{\sqrt{3}}{2}\to x^2=\frac{\left(\sqrt{3}\pm1\right)^2}{4}\to x=\pm\frac{\sqrt{3}\pm1}{2}\to x=-\frac{\sqrt{3}+1}{2}\).
Trường hợp \(x+y=2\to xy=1\to x=y=1\to x=1.\)
Vậy phương trình có hai nghiệm là \(x=1,-\frac{\sqrt{3}+1}{2}\).
3. Điều kiện \(x^2-4x-5\ge0\)
Phương trình viết lại dưới dạng \(2\left(x^2-4x-5\right)+\sqrt{x^2-4x-5}-3=0.\) Đặt \(t=\sqrt{x^2-4x-5},t\ge0\to2t^2+t-3=0\to\left(t-1\right)\left(2t+3\right)=0\to t=1\to\)
\(x^2-4x-5=1\to x^2-4x+4=10\to x=2\pm\sqrt{10}.\)
ồ cuk khó nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !