Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)\)
\(=\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)\)
\(=\left(x-2\right)\left(x+2-3+2x\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
b) ĐKXĐ: x ≠ 5; x ≠ -5
Với điều kiện trên ta có:
\(\dfrac{x+5}{x^2-5x}-\dfrac{x-5}{2x^2+10x}=\dfrac{x+25}{2x^2-50}\)
\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x^2-25\right)}=0\)
\(\Leftrightarrow\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=0\)
\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2-x\left(x+25\right)=0\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)
\(\Leftrightarrow5x-25=0\)
\(\Leftrightarrow5x=25\)
\(\Leftrightarrow x=5\)(Không thỏa mãn ĐKXĐ)
Vậy tập nghiệm của phương trình là S = ∅
c) ĐKXĐ: x ≠ 1
Với điều kiện trên ta có:
\(\dfrac{1}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{2x}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x}{x^2+x+1}=0\)
\(\Rightarrow x^2+x+1-3x^2-2x\left(x-1\right)=0\)
\(\Leftrightarrow x^2+x+1-3x^2-2x^2+2x=0\)
\(\Leftrightarrow-4x^2+3x+1=0\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(Khôngthoảman\right)\\x=-\dfrac{1}{4}\left(Thỏamãn\right)\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{4}\right\}\)
lớp 9 gì như lớp 6 thế
a) đề sai
c) <=>x/3 +x/3 -1 =2-x/3
<=>3.x/3 =3 => x=3
b) x<> 0; -2 <=>
x^2 -1 +x =2x-1
<=>x^2 -x =0 => x =0 (l) x =1 nhận
d ; <=> (x+1)/65+1 +(x+3)/63 +1 =(x+5)/61+1 +(x+7)/59+1
<=>(x+66) [1/65+1/63-1/61-1/59] =0
[...] khác 0
x=-66
c: \(\Leftrightarrow2x+2x-6=12-2x\)
=>4x-6=12-2x
=>6x=18
hay x=3
b: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)+x=2x-1\)
\(\Leftrightarrow x^2-1+x=2x-1\)
=>x2-x=0
=>x(x-1)=0
=>x=0(loại) hoặc x=1(nhận)
a: \(\left\{{}\begin{matrix}3x-2y=1\\2x+4y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-4y=2\\2x+4y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x=5\\3x-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\2y=3x-1=\dfrac{15}{8}-1=\dfrac{7}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=\dfrac{7}{16}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}4x-3y=1\\-x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-3y=1\\-4x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=-1+2y=-1+2=1\end{matrix}\right.\)
c: \(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{4}{3}y=1\\\dfrac{1}{2}x-\dfrac{3}{4}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=3\\2x-3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{41}{14}\\y=-\dfrac{5}{7}\end{matrix}\right.\)
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
Bài 1 : Ta xét : \(\dfrac{2}{4}=\dfrac{3}{6}=\dfrac{5}{10}\) hay \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\)
Nên phương trình có vô số nghiệm .
Mà \(2x+3y=5\Rightarrow x=\dfrac{5-3y}{2}\)
Vậy \(y\in R\) và \(x=\dfrac{5-3y}{2}\)
Bài 2 : \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
Đặt \(\dfrac{x}{x+1}=a\) và \(\dfrac{1}{y+4}=b\) Khi đó hệ trở thành :
\(\left\{{}\begin{matrix}3a-2b=4\\2a-5b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6a-4b=8\\6a-15b=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11b=-19\\6a-4b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{19}{11}\\a=\dfrac{2}{11}\end{matrix}\right.\)
Với \(\left\{{}\begin{matrix}a=\dfrac{2}{11}\\b=-\dfrac{19}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{2}{11}\\\dfrac{1}{y+4}=-\dfrac{19}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11x=2x+2\\-19y-76=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x=2\\-19y=87\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{9}\\y=-\dfrac{87}{19}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\dfrac{2}{9};-\dfrac{87}{19}\right)\)
a,5x2-3x+1=2x+11
\(\Leftrightarrow5x^2-3x+1-2x-11=0\)
\(\Leftrightarrow5x^2-5x-10=0\)
có a-b+c=5+5-10=0
=>\(\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
vậy PT đã cho có 2 nghiệm là x1=-1;x2=2
b/\(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6}\)
=>6x2-20x-5x-25=0
<=>6x2-25x-25=0
<=>(x-5)(6x+5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{-5}{6}\end{matrix}\right.\)
vậy PT đã cho có 2 nghiệm x1=5; x2=\(\dfrac{-5}{6}\)
c.\(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x}\)
=>x2+2x-10=0
\(\Delta^'=1+10=11\)
vì \(\Delta^'>0\) nên PT có 2 nghiệm phân biệt
x1=-1-\(\sqrt{11}\)
x2=-1+\(\sqrt{11}\)
d, \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1}\) ĐK x\(\ne\pm\dfrac{1}{3}\)
=>2(x+0,5)(3x-1) =2(7x+2)
=>6x2-13x-5=0
\(\Delta=169+120=289\Rightarrow\sqrt{\Delta}=17\)
vì \(\Delta\)> 0 nên PT có 2 nghiệm phân biệt
x1=\(\dfrac{13-17}{6}=\dfrac{-1}{3}\) (loại)
x2=\(\dfrac{13+17}{6}=\dfrac{5}{2}\) (thỏa mãn)
e,\(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{3}x^2-\left(\sqrt{3}-1\right)x+1-\sqrt{3}=0\)
\(\Delta=\left(\sqrt{3}-1\right)^2-8\sqrt{3}\left(1-\sqrt{3}\right)\)
=\(4-2\sqrt{3}-8\sqrt{3}+24\)
=25-2.5\(\sqrt{3}\)+3 =(5-\(\sqrt{3}\))2
vì \(\Delta\) >0 nên PT có 2 nghiệm phân biệt
x1=\(\dfrac{\sqrt{3}-1+5-\sqrt{3}}{4\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
x2=\(\dfrac{\sqrt{3}-1-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\)
f/ x2+2\(\sqrt{2}\)x+4=3(x+\(\sqrt{2}\))
\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4-3\sqrt{2}=0\)
\(\Delta=8-12\sqrt{2}+9-16+12\sqrt{2}=1\)
vì \(\Delta\)>0 nên PT đã cho có 2 nghiệm phân biệt
x1=\(\dfrac{3-2\sqrt{2}+1}{2}=2-\sqrt{2}\)
x2=\(\dfrac{3-2\sqrt{2}-1}{2}=1-\sqrt{2}\)
a.
\(5x^2-3x+1=2x+11\)\(\Leftrightarrow\)\(5x^2-5x-10=0\)\(\Leftrightarrow\)\(x^2-x-2=0\)\(\Leftrightarrow\)(x-2)(x+1)=0\(\Leftrightarrow\)\(\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b.
Lời giải:
PT \(\Leftrightarrow (\frac{x+1}{11}-1)-(\frac{2x-5}{15}-1)=(\frac{3x-47}{17}+1)-(\frac{4x-59}{19}+1)\)
\(\Leftrightarrow \frac{x-10}{11}-\frac{2(x-10)}{15}=\frac{3(x-10)}{17}-\frac{4(x-10)}{19}\)
\(\Leftrightarrow (x-10)(\frac{1}{11}+\frac{4}{19}-\frac{2}{15}-\frac{3}{17})=0\)
\(\Leftrightarrow x-10=0\Leftrightarrow x=10\)