Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
A B C D I M H N E
a/
Xét tg vuông ABD có
\(\sin\widehat{B}=\dfrac{AD}{AB}=\dfrac{12}{13}\)
\(\sin\widehat{BAD}=\sin\left(\dfrac{\Pi}{2}-\widehat{B}\right)=\cos\widehat{B}\)
Ta có
\(\sin^2\widehat{B}+\cos^2\widehat{B}=1\Rightarrow\cos^2\widehat{B}=1-\sin^2\widehat{B}=1-\left(\dfrac{12}{13}\right)^2=\dfrac{25}{169}\)
\(\Rightarrow\sin\widehat{BAD}=\cos\widehat{B}=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow\sin\widehat{BAD}=\dfrac{BD}{AB}=\dfrac{BD}{13}=\sqrt{\dfrac{25}{169}}\)
\(\Rightarrow BD=13.\sqrt{\dfrac{25}{169}}=5cm\)
Xét tg cân ABC có
\(BD=CD=\dfrac{1}{2}BC\) (trong tg cân đường cao hạ từ đỉnh tg cân đồng thời là đường trung tuyến)
\(\Rightarrow BC=2.BD=2.5=10cm\)
b/
Xét tg BDM có
\(BI=MI\left(gt\right);DI\perp BM\) => tg BDM cân tại D (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
\(\Rightarrow DM=BD=\dfrac{1}{2}BC\)
c/
Ta có
\(DM=BD\left(cmt\right);BD=CD\left(cmt\right)\Rightarrow DM=BD=CD\)
=> tg BDM và tg CDM đều là tg cân tại D
Xét tg BCM có
\(\widehat{BMC}=\left(\widehat{BMD}+\widehat{CMD}\right)=180^o-\left(\widehat{ABC}+\widehat{BCM}\right)\)
Mà \(\widehat{BMD}=\widehat{ABC};\widehat{CMD}=\widehat{BCM}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{BMC}=180^o-\left(\widehat{BMD}+\widehat{CMD}\right)=180^o-\widehat{BMC}\)
\(\Rightarrow2\widehat{BMC}=180^o\Rightarrow\widehat{BMC}=\dfrac{180^o}{2}=90^o\Rightarrow CM\perp AB\)
Mà \(AD\perp BC\)
=> H là trực tâm của tg ABC \(\Rightarrow BN\perp AC\) (trong tg 3 đường cao đồng quy)
Xét tg vuông BCM và tg vuông BCN có
BC chung
\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân)
=> tg BCM = tg BCN (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow BM=CN\) mà AB=AC (gt)
\(\Rightarrow\dfrac{BM}{AB}=\dfrac{CN}{AC}\) => MN//BC (Talet đảo) (1)
Xét tứ giác BDME có
BI=MI (gt); EI=DI (gt) => BDME là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ME//BD (Trong hbh các cặp cạnh đối // với nhau từng đôi một)
=> ME//BC (2)
Từ (1) và (2) \(\Rightarrow MN\equiv ME\) (Từ 1 điểm bên ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng cho trước)
=> E; M; N thẳng hàng
1: ΔABC cân tại A có AD là đường cao
nên D là trung điểm của BC
Xét ΔADB vuông tại D có \(sinABD=\dfrac{AD}{AB}=\dfrac{12}{13}\)
=>\(sinABC=\dfrac{12}{13}\)
=>\(cosABC=\sqrt{1-\left(\dfrac{12}{13}\right)^2}=\dfrac{5}{13}\)
Xét ΔABC có \(cosABC=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(\dfrac{13^2+BC^2-13^2}{2\cdot13\cdot BC}=\dfrac{5}{13}\)
=>\(BC^2=\dfrac{5}{13}\cdot26\cdot BC=10BC\)
=>\(BC^2-10BC=0\)
=>BC(BC-10)=0
=>BC-10=0
=>BC=10(cm)
2: Xét ΔDIB vuông tại I và ΔDIM vuông tại I có
DI chung
IB=IM
Do đó: ΔDIB=ΔDIM
=>DB=DM
mà DB=1/2BC
nên DM=1/2BC
3: Xét ΔMBC có
MD là đường trung tuyến
\(MD=\dfrac{1}{2}BC\)
Do đó: ΔMBC vuông tại M
=>CM\(\perp\)AB tại M
Xét ΔIME vuông tại I và ΔIBD vuông tại I có
IM=IB
IE=ID
Do đó: ΔIME=ΔIBD
=>\(\widehat{IME}=\widehat{IBD}\)
=>ME//BD
=>ME//BC
Xét ΔABC có
AD,CM là các đường trung tuyến
AD cắt CM tại H
Do đó: H là trực tâm của ΔABC
=>BH\(\perp\)AC tại N
Xét ΔABN vuông tại N và ΔACM vuông tại M có
AB=AC
\(\widehat{BAN}\) chung
Do đó: ΔABN=ΔACM
=>AN=AM
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: MN//BC
ME//BC
MN,ME có điểm chung là M
Do đó: N,M,E thẳng hàng