Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{19}{20}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot\cdot\cdot\cdot19}{2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot\cdot\cdot20}\)
\(=\frac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot\cdot\cdot19\right)}{\left(2\cdot3\cdot4\cdot5\cdot\cdot\cdot19\right)\cdot20}\)
\(=\frac{1}{20}\)
a,B=1/2^2+1/3^2+...+1/8^2
suy ra B=1/2.2+1/3.3+1/4.4+....+1/8.8
mà 1/2.2<1/1.2;1/3.3<1/2.3;...;1/8.8<1/7.8
suy ra B<1/1.2+1/2.3+...+1/7.8
B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
B<1-1/8<1 suy ra B <1
b,C=(1-1/2).(1-1/3)....(1-1/20)
C=1/2.2/3....19/20
C=1.2.3....18.19/2.3.4...19.20
C=1/20
(mình ko chắc vs hết quả phần b đâu nha)
\(\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};\frac{1}{5^2}<\frac{1}{4.5};....;\frac{1}{100^2}<\frac{1}{99.100}\)
=> \(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{100^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A<\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\)
Vâyk...
ta thấy:
1/3^2<1/2.3
1/4^2<1/3.4
.................
1/100^2<1/99.100
=>1/3^2+1/4^2+1/5^2+.........1/100^2<1/2.3+1/3.4+1/4.5+....+1/99.100
=1/2-1/3+1/3-1/4+.........+1/99-1/100
=1/2-1/100<1/2(đpcm)
a)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
b)
Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)
\(3^2D=3^3+3^5+...+3^{101}\)
\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)
\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)
Tương tự \(E=\frac{3^{102}-3^2}{8}\)
Ta có \(D-E=B\)
Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)
Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)
c,\(C=1+5^2+5^4+5^6+...+5^{200}\)
\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)
\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)
\(=5^{202}-1\)
\(\Rightarrow C=\frac{5^{202}-1}{24}\)
A = 1 + 2 + 22 + ... + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
=> 2A - A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )
=> A = 2101 - 1
\(3,1+5^2+5^4+...+5^{26}\)
\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)
\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)
\(=26+5^4.26+...+5^{24}.26\)
\(=26\left(5^4+...+5^{24}\right)\)
Vì \(26⋮26\)
\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)
\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)
\(4,1+2^2+2^4+...+2^{100}\)
\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)
\(=21+2^6.21...+2^{98}.21\)
\(=21\left(2^6+...+2^{98}\right)\)
Có : \(21\left(2^6+...+2^{98}\right)⋮21\)
\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)