K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

giải câu 3

12 tháng 12 2019

Nếu \(n>0\Rightarrow\left(n-1\right)n\left(n+1\right)=n^3-n< n^3.\)

\(\Rightarrow VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}\)

\(\Rightarrow2.VT< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)

\(\Rightarrow2.VT< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)

\(\Rightarrow2VT< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(\Rightarrow2.VT< \frac{1}{2}-\frac{1}{2006.2007}\Rightarrow VT< \frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)

7 tháng 1 2016

XET 1+1/2^2+1/3^2+1/4^2+....+1/100^2 
=>1+1/2^2+1/3^2+1/4^2+....+1/100^2  < 1 + 1/1.2 + 1/2.3 +... + 1/100.101 
=> 1+1/2^2+1/3^2+1/4^2+....+1/100^2 < 1+ (1-1/2+1/2-1/3+...+1/100-1/101) 
=> 1+1/2^2+1/3^2+1/4^2+....+1/100^2 < 1+ 1-1/101 <2

26 tháng 6 2018

đề câu a) sai rồi bạn ơi

26 tháng 6 2018

mình cần câu b thôi 

mà câu a có sai đâu

16 tháng 7 2019

B1:a) x=-6/5-y

y=-6/5-x

b) x=3y

y=x/3

8 tháng 10 2018

Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

             \(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

              \(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

             \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

              \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)

              \(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)

    \(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)

\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)

\(\Rightarrow\) \(B⋮A\)

9 tháng 6 2017

sửa đề câu 1 :

\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=1-\frac{1}{100!}< 1\)

sửa đề câu 2

\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)

\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)

20 tháng 6 2019

khi cộng cac số có tử bé hơn mẫu thì tổng sẽ <1 nha